The authors give asymptotic expansions for t→∞ of the correlation functions of sufficiently regular observables for Z^d extensions of a suitable class of hyperbolic flows, in an abstract setup. The class under study includes the finite horizon periodic Lorentz gas in dimension 2 (i.e., a Sinai billiard) and geodesic flows on abelian covers of compact Riemannian manifolds with negative curvature.
valeria ricci (2023). Dolgopyat, Dmitry; Nándori, Péter; Pène, Françoise Asymptotic expansion of correlation functions for Zd covers of hyperbolic flows. (English. French summary) Zbl 1510.37039 Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 2, 1244-1283 (2022)..
Dolgopyat, Dmitry; Nándori, Péter; Pène, Françoise Asymptotic expansion of correlation functions for Zd covers of hyperbolic flows. (English. French summary) Zbl 1510.37039 Ann. Inst. Henri Poincaré, Probab. Stat. 58, No. 2, 1244-1283 (2022).
valeria ricci
2023-01-01
Abstract
The authors give asymptotic expansions for t→∞ of the correlation functions of sufficiently regular observables for Z^d extensions of a suitable class of hyperbolic flows, in an abstract setup. The class under study includes the finite horizon periodic Lorentz gas in dimension 2 (i.e., a Sinai billiard) and geodesic flows on abelian covers of compact Riemannian manifolds with negative curvature.File | Dimensione | Formato | |
---|---|---|---|
1510.37039.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
257 kB
Formato
Adobe PDF
|
257 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.