Preference-approval structures combine preference rankings and approval voting to express preferences over a set of alternatives. This paper proposes a new method for clustering and visualizing alternatives in the context of preference-approvals. Firstly, we present a new family of pseudometrics defined on a set of alternatives, evaluated via preferenceapprovals. The distances among alternatives are used as input in the Ranked k-medoids algorithm to find clusters. Finally, clusters are visualized in a two-dimensional space using non-metric multidimensional scaling. We show, through an application to real data, that our approach allows for reducing the complexity of the preference-approval space and facilitates its interpretation.

Alessandro Albano, José Luis Garcia-Lapresta, Mariangela Sciandra, Antonella Plaia (2023). Clustering alternatives in the preference-approval context. In Book of the Short Papers SIS 2023 (pp. 950-954).

Clustering alternatives in the preference-approval context

Alessandro Albano;Mariangela Sciandra;Antonella Plaia
2023-01-01

Abstract

Preference-approval structures combine preference rankings and approval voting to express preferences over a set of alternatives. This paper proposes a new method for clustering and visualizing alternatives in the context of preference-approvals. Firstly, we present a new family of pseudometrics defined on a set of alternatives, evaluated via preferenceapprovals. The distances among alternatives are used as input in the Ranked k-medoids algorithm to find clusters. Finally, clusters are visualized in a two-dimensional space using non-metric multidimensional scaling. We show, through an application to real data, that our approach allows for reducing the complexity of the preference-approval space and facilitates its interpretation.
2023
9788891935618
Alessandro Albano, José Luis Garcia-Lapresta, Mariangela Sciandra, Antonella Plaia (2023). Clustering alternatives in the preference-approval context. In Book of the Short Papers SIS 2023 (pp. 950-954).
File in questo prodotto:
File Dimensione Formato  
BoA_SIS2023.pdf

Solo gestori archvio

Descrizione: FullPaper
Tipologia: Versione Editoriale
Dimensione 666.83 kB
Formato Adobe PDF
666.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/605894
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact