Functional graphical modelling is gaining increasing attention in recent years. In this paper, we contribute to the literature by extending the notion of conditional Gaussian graphical model to a functional setting. We propose a double-penalized estimator and an efficient algorithm to recover the edge-set encoding both the conditional covariance structure of the response functions and the effects of the predictor functions on the conditional distribution.

Rita Fici, GIANLUCA SOTTILE, Luigi Augugliaro (2023). Conditional Gaussian Graphical Models for Functional Variables with Partially Separable Operators. In SEAS 2023 Book of the Short Papers (pp. 1149-1154).

Conditional Gaussian Graphical Models for Functional Variables with Partially Separable Operators

Rita Fici
;
GIANLUCA SOTTILE;Luigi Augugliaro
2023-01-01

Abstract

Functional graphical modelling is gaining increasing attention in recent years. In this paper, we contribute to the literature by extending the notion of conditional Gaussian graphical model to a functional setting. We propose a double-penalized estimator and an efficient algorithm to recover the edge-set encoding both the conditional covariance structure of the response functions and the effects of the predictor functions on the conditional distribution.
2023
9788891935618
Rita Fici, GIANLUCA SOTTILE, Luigi Augugliaro (2023). Conditional Gaussian Graphical Models for Functional Variables with Partially Separable Operators. In SEAS 2023 Book of the Short Papers (pp. 1149-1154).
File in questo prodotto:
File Dimensione Formato  
FiciEtAl_SIS_23.pdf

Solo gestori archvio

Descrizione: Contributo completo
Tipologia: Versione Editoriale
Dimensione 950.02 kB
Formato Adobe PDF
950.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
bozza-book-compresso.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 728.62 kB
Formato Adobe PDF
728.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/603813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact