In this paper we give a complete classification of the Leibniz algebras of biderivations of right Leibniz algebras of dimension up to three over a field F, with char(F) different from 2. We describe the main properties of such class of Leibniz algebras and we also compute the biderivations of the four-dimensional Dieudonné Leibniz algebra d1. Eventually we give an algorithm for finding derivations and anti-derivations of a Leibniz algebra as pair of matrices with respect to a fixed basis.

Mancini, M. (2023). Biderivations of Low-Dimensional Leibniz Algebras. In H. Albuquerque, J. Brox, C. Martínez, P. Saraiva (a cura di), Non-Associative Algebras and Related Topics. NAART II, Coimbra, Portugal, July 18–22, 2022, Proceedings (pp. 127-136). Springer Cham [10.1007/978-3-031-32707-0_8].

Biderivations of Low-Dimensional Leibniz Algebras

Mancini, Manuel
2023-07-29

Abstract

In this paper we give a complete classification of the Leibniz algebras of biderivations of right Leibniz algebras of dimension up to three over a field F, with char(F) different from 2. We describe the main properties of such class of Leibniz algebras and we also compute the biderivations of the four-dimensional Dieudonné Leibniz algebra d1. Eventually we give an algorithm for finding derivations and anti-derivations of a Leibniz algebra as pair of matrices with respect to a fixed basis.
29-lug-2023
Settore MATH-02/A - Algebra
Settore MATH-02/B - Geometria
978-3-031-32706-3
978-3-031-32707-0
Mancini, M. (2023). Biderivations of Low-Dimensional Leibniz Algebras. In H. Albuquerque, J. Brox, C. Martínez, P. Saraiva (a cura di), Non-Associative Algebras and Related Topics. NAART II, Coimbra, Portugal, July 18–22, 2022, Proceedings (pp. 127-136). Springer Cham [10.1007/978-3-031-32707-0_8].
File in questo prodotto:
File Dimensione Formato  
Biderivations of low-dimensional Leibniz algebras.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 375.03 kB
Formato Adobe PDF
375.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/603433
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact