In recent years, functional data has become a commonly encountered data type. In this paper, we contribute to the literature on functional graphical modelling by extending the notion of conditional Gaussian graphical and proposing a double penalized estimator by which to recover the edge-set of the corresponding graph.

Rita Fici, Gianluca Sottile, Luigi Augugliaro (2023). Sparse Inference in functional conditional Gaussian Graphical Models under Partial Separability. In Proceedings of the Statistics and Data Science Conference.

Sparse Inference in functional conditional Gaussian Graphical Models under Partial Separability

Rita Fici
;
Gianluca Sottile;Luigi Augugliaro
2023-01-01

Abstract

In recent years, functional data has become a commonly encountered data type. In this paper, we contribute to the literature on functional graphical modelling by extending the notion of conditional Gaussian graphical and proposing a double penalized estimator by which to recover the edge-set of the corresponding graph.
2023
978-88-6952-170-6
Rita Fici, Gianluca Sottile, Luigi Augugliaro (2023). Sparse Inference in functional conditional Gaussian Graphical Models under Partial Separability. In Proceedings of the Statistics and Data Science Conference.
File in questo prodotto:
File Dimensione Formato  
9788869521706 (5)_merged.pdf

Solo gestori archvio

Descrizione: Contributo completo
Tipologia: Versione Editoriale
Dimensione 359.76 kB
Formato Adobe PDF
359.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/602835
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact