In this paper we study the Lie algebras of derivations of two-step nilpotent algebras. We obtain a class of Lie algebras with trivial center and abelian ideal of inner derivations. Among these, the relations between the complex and the real case of the indecomposable Heisenberg Leibniz algebras are thoroughly described. Finally we show that every almost inner derivation of a complex nilpotent Leibniz algebra with one-dimensional commutator ideal, with three exceptions, is an inner derivation.

La Rosa, G., Mancini, M. (2023). Derivations of two-step nilpotent algebras. COMMUNICATIONS IN ALGEBRA, 51(12), 4928-4948 [10.1080/00927872.2023.2222415].

Derivations of two-step nilpotent algebras

La Rosa, Gianmarco;Mancini, Manuel
2023-01-01

Abstract

In this paper we study the Lie algebras of derivations of two-step nilpotent algebras. We obtain a class of Lie algebras with trivial center and abelian ideal of inner derivations. Among these, the relations between the complex and the real case of the indecomposable Heisenberg Leibniz algebras are thoroughly described. Finally we show that every almost inner derivation of a complex nilpotent Leibniz algebra with one-dimensional commutator ideal, with three exceptions, is an inner derivation.
2023
La Rosa, G., Mancini, M. (2023). Derivations of two-step nilpotent algebras. COMMUNICATIONS IN ALGEBRA, 51(12), 4928-4948 [10.1080/00927872.2023.2222415].
File in questo prodotto:
File Dimensione Formato  
Derivations of two-step nilpotent algebras.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2301.11058.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 240.68 kB
Formato Adobe PDF
240.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/596273
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact