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Abstract

In this paper we study the Lie algebras of derivations of two-step nilpo-

tent algebras. We obtain a class of Lie algebras with trivial center and

abelian ideal of inner derivations. Among these, the relations between the

complex and the real case of the indecomposable Heisenberg Leibniz alge-

bras are thoroughly described. Finally we show that every almost inner

derivation of a complex nilpotent Leibniz algebra with one-dimensional

commutator ideal, with three exceptions, is an inner derivation.

Introduction

Leibniz algebras were first introduced by J.-L. Loday in [16] as a non-
antisymmetric version of Lie algebras, and many results of Lie algebras were
also established in the frame of Leibniz algebras. Earlier, such algebraic struc-
tures were considered by A. Blokh, who called them D-algebras [6], for their
strict connection with the derivations. Leibniz algebras play a significant role
in different areas of mathematics and physics.
In [3] and [11] derivations of nilpotent Lie algebras with small dimensional com-
mutator ideal were studied; in [12] and [14] two-step nilpotent algebras were
classified. After a short preliminary section, in this paper we aim to study the
Lie algebras of derivations of two-step nilpotent algebras. Independently of its
intrinsic interest, derivations find concrete applications in representation the-
ory (cf. [15]), (sub-)Riemannian geometry and control theory (see [5], and the
bibliography therein), just to give two instances.

The first section is devoted to some background material on Leibniz alge-
bras and derivations which will be useful for the rest of the paper. We address
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the reader to [2] and [10] for more details. We recall that there are only three
classes of indecomposable nilpotent Leibniz algebras with one-dimensional com-
mutator ideal, namely the Heisenberg Leibniz algebras lA2n+1, parametrized by
their dimension 2n+ 1 and a n× n matrix A in canonical form, the Kronecker
Leibniz algebras kn and the Dieudonné Leibniz algebras dn, both parametrized
by their dimension only. Recently noncommutative Heisenberg algebras were
also studied in [13].

In Sections 2, 3, 4 we find the derivation algebras of such nilpotent Leibniz
algebras. The properties of these Lie algebras are studied and, for the Heisenberg
algerbras, we analyze the relations between the complex and the real case. We
always obtain Lie algebras of derivations with trivial center and abelian ideal
of inner derivations. We use the LieAlgebras package of the software Maple for
finding the radical, the Levi decomposition and the nilradical of such algebras.

In the last section we show that, for a complex nilpotent Leibniz algebra L

with one-dimensional commutator ideal, such that L is not isomorphic to l
J±1

2n+1

or dn, every almost inner derivation is an inner derivation. This generalizes
the result found by D. Burde, K. Dekimpe and V. Verbeke in [7] for two-step
nilpotent Lie algebras of genus 1. We also find the Lie subalgebras AIDer(lJa

2n+1),
when a = ±1, and AIDer(dn), showing that in this case the inclusions

AIDer(l
J±1

2n+1) ) Inn(l
J±1

2n+1) and AIDer(dn) ) Inn(dn)

are strict.

1 Preliminaries

We assume that F is a field with char(F) 6= 2. For the general theory we refer
to [2].

Definition 1.1. A left Leibniz algebra over F is a vector space L over F endowed
with a bilinear map (called commutator or bracket) [−,−] : L × L → L which
satisfies the left Leibniz identity

[x, [y, z]] = [[x, y] , z] + [y, [x, z]] , ∀x, y, z ∈ L.

In the same way we can define a right Leibniz algebra, using the right Leibniz
identity

[[x, y] , z] = [[x, z], y] + [x, [y, z]] , ∀x, y, z ∈ L.

A Leibniz algebra that is both left and right is called symmetric Leibniz algebra.
From now on we assume that dimF L < ∞.

Clearly every Lie algebra is a Leibniz algebra and every Leibniz algebra with
skew-symmetric commutator is a Lie algebra. Thus it is defined an adjunction
(see [17]) between the category LieAlgF of the Lie algebras over F and the
category LeibAlgF of the Leibniz algebras over F. The left adjoint of the full
inclusion i : LieAlgF → LeibAlgF is the functor π : LeibAlgF → LieAlgF
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that associates with every Leibniz algebra L the quotient L/Leib(L), where
Leib(L) = 〈[x, x] |x ∈ L〉. We observe that Leib(L) is the smallest bilateral
ideal of L such that L/Leib(L) is a Lie algebra. Moreover Leib(L) is an abelian
algebra.

The definition of derivation is the same as in the case of Lie algebras.

Definition 1.2. Let L be a Leibniz algebra over F. A derivation of L is a linear
map d : L → L such that

d([x, y]) = [d(x), y] + [x, d(y)] , ∀x, y ∈ L.

The left multiplications are particular derivations called inner derivations
and an equivalent way to define a left Leibniz algebra is to say that the (left)
adjoint map adx = [x,−] is a derivation, for every x ∈ L. Meanwhile, for a left
Leibniz algebra, the right adjoint maps are not derivations in general.
With the usual bracket [d1, d2] = d1 ◦ d2 − d2 ◦ d1, the set Der(L) is a Lie al-
gebra and the set Inn(L) of all inner derivations of L is an ideal of Der(L).
Furthermore, Aut(L) is a Lie group and the associated Lie algebra is Der(L).

Definition 1.3. A derivation d of a Leibniz algebra L is called almost inner
derivation if d(x) ∈ [L, x], for every x ∈ L.

In [1] Z. K. Adashev and T. K. Kurbanbaev proved that the space of all
almost inner derivations, denoted by AIDer(L), is a Lie subalgebra of Der(L)
and

Inn(L) ⊆ AIDer(L).

We define the left and the right center of a Leibniz algebra

Zl(L) = {x ∈ L | [x, L] = 0} , Zr(L) = {x ∈ L | [L, x] = 0} ,

and we observe that they coincide when L is a Lie algebra. The center of L is
Z(L) = Zl(L)∩Zr(L). In the case of symmetric Leibniz algebras, the left center
and the right center are bilater ideals, but in general Zl(L) is an ideal of the left
Leibniz algebra L, meanwhile the right center is not even a subalgebra.

Definition 1.4. Let L be a left Leibniz algebra over F and let

L(0) = L, L(k+1) = [L,L(k)], ∀k ≥ 0,

be the lower central series of L. L is n−step nilpotent if L(n−1) 6= 0 and
L(n) = 0.

We observe that two-step nilpotent Leibniz algebras lie in different varieties
of non-associative algebras, such as associative, alternative and Zinbiel algebras.
For this reason we will refer at them as two-step nilpotent algebras.

One can directly prove the following.

Proposition 1.5. If L is a left two-step nilpotent algebra, then L(1) = [L,L] ⊆
Z(L) and L is symmetric.
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Proposition 1.6. If L is a left nilpotent Leibniz algebra with dimF L
(1) = 1,

then L(1) ⊆ Z(L) and L is symmetric.

Nilpotent Leibniz algebras with one-dimensional commutator ideal were clas-
sified in [14]. It was proved that, up to isomorphism, there are only the following
three classes of indecomposable nilpotent Leibniz algebras with one-dimensional
commutator ideal.

Definition 1.7. [14] Let f(x) ∈ F [x] be a monic irreducible polynomial. Let
k ∈ N and let A = (aij)i,j be the companion matrix of f(x)k. The Heisen-
berg Leibniz algebra lA2n+1 is the (2n+1)-dimensional Leibniz algebra with basis
{e1, . . . , en, f1, . . . , fn, z} and the Leibniz brackets are given by

[ei, fj] = (δij + aij)z, [fj , ei] = (−δij + aij)z, ∀i, j = 1, . . . , n.

Notice that, if A is the zero matrix, then we obtain the (2n+1)−dimensional
Heisenberg Lie algebra h2n+1.

Definition 1.8. [14] Let n ∈ N. The Kronecker Leibniz algebra kn is the
(2n + 1)-dimensional Leibniz algebra with basis {e1, . . . , en, f1, . . . , fn, z} and
the Leibniz brackets are given by

[ei, fi] = [fi, ei] = z, ∀i = 1, . . . , n

[ei, fi−1] = z, [fi−1, ei] = −z, ∀i = 2, . . . , n.

Definition 1.9. [14] Let n ∈ N. The Dieudonné Leibniz algebra dn is the
(2n + 2)-dimensional Leibniz algebra with basis {e1, . . . , e2n+1, z} and and the
Leibniz brackets are given by

[e1, en+2] = z,

[ei, en+i] = [ei, en+i+1] = z, ∀i = 2, . . . , n,

[en+1, e2n+1] = z,

[ei, ei−n] = z, [ei, ei−n−1] = −z, ∀i = n+ 2, . . . , 2n+ 1.

In the next sections we study the Lie algebra of derivations of the three
classes of indecomposable nilpotent Leibniz algebras with one-dimensional com-
mutator ideal. We observe that, given a derivation d of a Leibniz algebra L, we
have

d([L,L]) ⊆ [L,L],

thus, if [L,L] = Fz, it follows that d(z) = γz, for some γ ∈ F.

2 Derivations of the Heisenberg Leibniz algebras

lA2n+1

Now we want to study in details the Lie algebras of derivations of the Heisenberg
Leibniz algebras in the case the field F is C or R.
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2.1 The complex case

Let n ∈ N and let f(x) = x− a ∈ C[x]. Then the companion matrix A of f(x)n

is similar to the n× n Jordan block Ja of eigenvalue a. Thus lA2n+1
∼= l

Ja

2n+1 and
the Leibniz brackets are given by

[ei, fi] = (1 + a)z, [fi, ei] = (−1 + a)z, ∀i = 1, . . . , n,

[ei, fi−1] = [fi−1, ei] = z, ∀i = 2, . . . , n,

where {e1, . . . , en, f1, . . . , fn, z} is a basis of lJa

2n+1. Moreover lJa

2n+1
∼= l

J−a

2n+1.
Now let d : lJa

2n+1 → l
Ja

2n+1 be a linear endomorphism such that

d(ei) =
n∑

j=1

ajiej +
n∑

k=1

bkifk + aiz, ∀i = 1, . . . , n,

d(fi) =

n∑

j=1

cjiej +

n∑

k=1

dkifk + biz, ∀i = 1, . . . , n

and
d(z) = γz.

Then for a 6= 0 the linear endomorphism d is a derivation of the Heisenberg
algebra l

Ja

2n+1 if and only if it has the following form


A 0 0
0 D 0
µ ν γ




where

A =




α1 α2 α3 . . . αn

0 α1 α2 . . . αn−1

0 0 α1 . . . αn−2

...
...

...
. . .

...
0 0 0 . . . α1




, D =




β1 0 0 . . . 0
−α2 β1 0 . . . 0
−α3 −α2 β1 . . . 0
...

...
...

. . .
...

−αn −αn−1 −αn−2 . . . β1




,

µ = (µ1, µ2, µ3, . . . , µn), ν = (ν1, ν2, ν3, . . . , νn), γ = α1 + β1.

Thus, Der(lJa

2n+1) is the Lie subalgebra of gl(2n+1,C) of dimension 3n+1 with
basis

{x, y, E1, . . . , En−1, A1, . . . , An, B1, . . . , Bn},

where

x =
n∑

k=1

ek,k + e2n+1,2n+1, y =
n∑

k=1

en+k,n+k + e2n+1,2n+1,

Ei =

n−i∑

k=1

(ek,k+i − en+i+k,n+k), ∀i = 1, . . . , n− 1,

Ai = e2n+1,i, Bi = e2n+1,n+i, ∀i = 1, . . . , n,
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and eij are matrix units and non-trivial commutators given by

[x,Bi] = Bi, [y,Ai] = Ai, ∀i = 1, . . . , n,

[Ei, Bk] = Bk−i, 1 ≤ i < k ≤ n,

[Ei, Ak] = −Ai+k, 1 ≤ i ≤ n− 1, 1 ≤ k ≤ n− i.

Remark 2.1. With the change of basis

{e1, . . . , en, f1, . . . , fn, z} 7→ {e1, f1, . . . , en, fn, z} ,

a derivation of lJa

2n+1 is represented by the (2n+ 1)× (2n+ 1) matrix




M1 −M̃2 −M̃3 −M̃4 · · · −M̃n 0

M2 M1 −M̃2 −M̃3 · · · −M̃n−1 0

M3 M2 M1 −M̃2 · · · −M̃n−2 0

M4 M3 M2 M1 · · · −M̃n−3 0
...

...
...

...
. . .

...
...

Mn Mn−1 Mn−2 Mn−3 · · · M1 0
v1 v2 v3 v4 · · · vn tr(M1)




where

M1 =

(
α1 0
0 β1

)
, Mi =

(
0 0
0 αi

)
, M̃i =

(
αi 0
0 0

)
, ∀i = 2, . . . , n,

vk = (µk, νk), for any k = 1, . . . , n and tr(M1) = α1 + β1.

In this case Der(lJa

2n+1) has basis

{x, y, E1, . . . , En−1, A1, . . . , An, B1, . . . , Bn},

where

x =

n∑

k=1

e2k−1,2k−1 + e2n+1,2n+1, y =

n∑

k=1

e2k,2k + e2n+1,2n+1,

Ei =

n−i+1∑

k=0

(e2(k+i+1),2(k+1) − e2k+1,2(k+i)+1), ∀i = 1, . . . , n− 1,

Ai = e2n+1,2i−1, Bi = e2n+1,2i, ∀i = 1, . . . , n

and the Lie brackets are given by

[x,Bi] = Bi, [y,Ai] = Ai, ∀i = 1, . . . , n,

[Ei, Bk] = −Bk−2i, k > 2i,

[Ei, Ak] = Ak+2i, k + 2i ≤ 2n.
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With this representation, one can check that

Der(lJa

2n+1) ⊆ Der(h2n+1),

where the derivations of the (2n+1)−dimensional Heisenberg Lie algebra h2n+1

were determined in [9], with respect to the symplectic basis {e1, f1, . . . , en, fn, z}
of h2n+1. Later we present the derivations of the Heisenberg Leibniz algebra
l
J0

2n+1 and the ones of the Kronecker Leibniz algebra kn with respect to this basis,
in order to compare them with the corresponding ones of the Heisenberg Lie
algebra h2n+1.

The commutator ideal of Der(lJa

2n+1) is the abelian algebra of dimension 2n
with basis

{A1, . . . An, B1, . . . , Bn},

thus Der(lJa

2n+1) is a two-step solvable Lie algebra. Moreover the lower central
series is

Der(lJa

2n+1) ⊇ 〈A1, . . . An, B1, . . . , Bn〉 ⊇ 〈A1, . . . An, B1, . . . , Bn〉 ⊇ ....

so Der(lJa

2n+1) is not nilpotent and its nilradical is the ideal

N = 〈E1, . . . , En−1, A1, . . . , An, B1, . . . , Bn〉.

Finally the center Z(Der(lJa

2n+1)) is trivial and the algebra of inner derivations
of lJa

2n+1 is
Inn(lJa

2n+1) = 〈Ah, . . . , An, B1, . . . , Bk〉,

with h = 1 and k = n if a 6= ±1; h = 2 and k = n if a = 1; and h = 1 and
k = n− 1 if a = −1. Indeed

adei = Bi−1 + (1 + a)Bi, ∀i = 2, . . . , n,

adfj = Aj+1 + (−1 + a)Aj , ∀j = 1, . . . , n− 1

and
ade1 = (1 + a)B1, adfn = (−1 + a)An,

thus for a = 1 we have

adfn = 0, adfj = Aj+1, ∀j = 1, . . . , n− 1

and the matrix A1 does not represent an inner derivations. In the same way, if
a = −1, then Bn 6∈ Inn(lJ1

2n+1). We will show later that

AIDer(lJa

2n+1) = 〈A1, . . . , An, B1, . . . , Bn〉

for every a ∈ C.
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When a = 0, a derivation of the Heisenberg Leibniz algebra l
J0

2n+1 has the
form 


A C 0
B D 0
µ ν γ




where A, D, µ, ν and γ are as above,

B =




0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 −bn+2

0 0 0 0 . . . 0 0 bn+2 0
0 0 0 0 . . . 0 −bn+2 0 −bn+4

...
...

...
... . .

. ...
...

...
...

0 0 0 0 . . . b2n−6 0 b2n−4 0
0 0 0 −bn+2 . . . 0 −b2n−4 0 −b2n−2

0 0 bn+2 0 . . . b2n−4 0 b2n−2 0
0 −bn+2 0 −bn+4 . . . 0 −b2n−2 0 −b2n




,

C =




c2 0 c4 0 . . . cn−2 0 cn 0
0 −c4 0 −c6 . . . 0 −cn 0 0
c4 0 c6 0 . . . cn 0 0 0
0 −c6 0 −c8 . . . 0 0 0 0
...

...
...

... . .
. ...

...
...

...
cn−1 0 cn 0 . . . 0 0 0 0
0 −cn 0 0 . . . 0 0 0 0
cn 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0




,

if n is even,

B =




0 0 0 0 . . . 0 0 0 bn+1

0 0 0 0 . . . 0 0 −bn+1 0
0 0 0 0 . . . 0 bn+1 0 bn+3

0 0 0 0 . . . −bn+1 0 −bn+3 0
...

...
...

... . .
. ...

...
...

...
0 0 0 −bn+1 . . . −b2n−3 0 −b2n−2 0
0 0 bn+1 0 . . . 0 b2n−3 0 b2n−2

0 −bn+1 0 −bn+3 . . . −b2n−2 0 −b2n 0
bn+1 0 bn+3 0 . . . 0 b2n−2 0 b2n




,
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C =




c2 0 c4 0 . . . 0 cn−1 0 cn+1

0 −c4 0 −c6 . . . −cn−1 0 −cn+1 0
c4 0 c6 0 . . . 0 cn+1 0 0
0 −c6 0 −c8 . . . −cn+1 0 0 0
...

...
...

... . .
. ...

...
...

...
0 −cn−1 0 −cn+1 . . . 0 0 0 0

cn−1 0 cn+1 0 . . . 0 0 0 0
0 −cn+1 0 0 . . . 0 0 0 0

cn+1 0 0 0 . . . 0 0 0 0




,

if n is odd.

If we reorder the basis basis as in Remark 2.1, then a derivation of lJ0

2n+1 is
represented by



α1 c2 −α2 0 −α3 c4 · · · −αn−1 cn −αn 0 0
0 β1 0 0 0 0 · · · 0 0 0 0 0
0 0 α1 −c4 −α2 0 · · · −αn−2 0 −αn−1 0 0
0 α2 0 β1 0 0 · · · 0 0 −bn+2 0 0
0 c4 0 0 α1 c6 · · · −αn−3 0 −αn−2 0 0
0 α3 0 α2 0 β1 · · · bn+2 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
0 cn 0 0 0 0 · · · α1 0 −α2 0 0
0 αn−1 0 αn−2 bn+2 αn−3 · · · b2n−2 β1 0 0 0
0 0 0 0 0 0 · · · 0 0 α1 0 0
0 αn −bn+2 αn−1 0 αn−2 · · · 0 α2 b2n β1 0
µ1 ν1 µ2 ν2 µ3 ν3 · · · µn−1 νn−1 µn νn α1 + β1




if n is even, and



α1 c2 −α2 0 −α3 c4 · · · −αn−1 0 −αn cn+1 0
0 β1 0 0 0 0 · · · 0 0 bn+1 0 0
0 0 α1 −c4 −α2 0 · · · −αn−2 −cn+1 −αn−1 0 0
0 α2 0 β1 0 0 · · · −bn+1 0 0 0 0
0 c4 0 0 α1 c6 · · · −αn−3 0 −αn−2 0 0
0 α3 0 α2 0 β1 · · · 0 0 bn+3 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 −cn+1 0 0 · · · α1 0 −α2 0 0
0 αn−1 −bn+1 αn−2 0 αn−3 · · · −b2n−2 β1 0 0 0
0 cn+1 0 0 0 0 · · · 0 0 α1 0 0

bn+1 αn 0 αn−1 bn+3 αn−2 · · · 0 α1 b2n β1 0
µ1 ν1 µ2 ν2 µ3 ν3 · · · µn−1 νn−1 µn νn α1 + β1




if n is odd. We can now study in details these two cases.
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If n is even, then Der(lJ0

2n+1) is a Lie algebra of dimension 4n+ 1 with basis

{x, y, E1, . . . , En−1, c2, c4, . . . , cn, bn+2, bn+4 . . . , b2n, A1, . . . , An, B1, . . . , Bn},

where

x =

n∑

k=1

e2k−1,2k−1 + e2k+1,2k+1,

y =

n∑

k=1

e2k,2k + e2k+1,2k+1,

Ei =

n−i+1∑

k=0

(e2(k+i+1),2(k+1) − e2k+1,2(k+i)+1), ∀i = 1, . . . , n− 1,

Ai = e2n+1,2i−1, Bi = e2n+1,2i, ∀i = 1, . . . , n,

ch =

h−2∑

i=0

(−1)ie2(h−i−1)−1,2(1+i), ∀h = 2, 4, . . . , n,

bh =

2n−h∑

i=0

(−1)ie2(n−i),2(h−n+i)−1, ∀h = n+ 2, n+ 4, . . . , 2n

and commutators

[x,Bi] = Bi, [y,Ai] = Ai, ∀i = 1, . . . , n,

[Ei, Bk] = −Bk−2i, k > 2i,

[Ei, Ak] = Ak+2i, k + 2i ≤ 2n,

[x, ch] = ch, [y, ch] = −ch, ∀h = 2, 4, . . . , n,

[x, bh] = −bh, [y, bh] = bh, ∀h = n+ 2, n+ 4, . . . , 2n,

[Ai, ck] = (−1)i+1Bk−i, [Bi, bk] = (−1)iAk−i, 1 ≤ k − i ≤ n,

[ck, bh] = Eh−k, h− k ≥ 1,

[α2i, ch] = −2ch−2i, h− 2i > 0,

[α2i, bh] = 2bh+2i, h+ 2i ≤ 2n.

Then the commutator ideal of Der(lJ0

2n+1) has basis

{E2, E4, . . . , En−2, c2, c4, . . . , cn, bn+2, bn+4 . . . , b2n, A1, . . . , An, B1, . . . , Bn}

and we have a (n2 + 1)−step solvable Lie algebra with derived series

Der(lJ0

2n+1) ⊇ [Der(lJ0

2n+1),Der(lJ0

2n+1)] ⊇

⊇ 〈E2, E4, . . . , En−2, c2, c4, . . . , cn−2, bn+4, . . . , b2n, A2, . . . , An, B1, . . . , Bn−1〉 ⊇ . . .

. . . ⊇ 〈c2, b2n, An
2
+1, . . . , An, B1, . . . , Bn

2
〉 ⊇ 0
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Moreover, Der(lJ0

2n+1) is not nilpotent and its nilradical is the ideal

N = 〈E1, . . . , En−1, c2, c4, . . . , cn, bn+2, bn+4 . . . , b2n, A1, . . . , An, B1, . . . , Bn〉.

If n is odd, then the algebra of derivations of lJ0

2n+1 has dimension 4n + 2
and it is generated by

{x, y, E1, . . . , En−1, c2, c4, . . . , cn+1, bn+1, bn+3 . . . , b2n, A1, . . . , An, B1, . . . , Bn}.

The Lie brackets are the same of the ones listed for the case n even, except for the
facts that [Bi, bk] = (−1)i+1Ak−i, for any 1 ≤ k−i ≤ n, and [cn+1, bn+1] = x−y.
Then the commutator ideal is the subspace generated by

{x−y, E2, E4, . . . , En−1, c2, c4, . . . , cn+1, bn+1, bn+3 . . . , b2n, A1, . . . , An, B1, . . . , Bn}.

In this case the Lie algebra of derivations is not solvable since

[[Der(lJ0

2n+1),Der(lJ0

2n+1)], [Der(lJ0

2n+1),Der(lJ0

2n+1)]] = [Der(lJ0

2n+1),Der(lJ0

2n+1)]

and the Levi decomposition is given by

Der(lJ0

2n+1) = R⋊ S,

where the radical of the Lie algebra is

R = 〈x+y, E1, . . . , En−1, c2, c4, . . . , cn−1, bn+3, bn+5 . . . , b2n, A1, . . . , An, B1, . . . , Bn〉

and the Levi complement is

S = 〈x− y, cn+1, bn+1〉.

Finally the nilradical is the ideal

N = 〈E1, . . . , En−1, c2, c4, . . . , cn−1, bn+3, bn+5 . . . , b2n, A1, . . . , An, B1, . . . , Bn〉.

In both cases n is even or odd, we have that Z(Der(lJ0

2n+1)) = 0 and the Lie
algebra of inner derivations is represented by the matrices of the type




0

0
...
0

µ1 ν1 . . . µn νn 0


 ,

thus Inn(lJ0

2n+1) is an abelian algebra of dimension 2n. Moreover, for every n ∈ N

and for every a ∈ C∗, we observe that

Der(h2n+1) ⊇ Der(lJ0

2n+1) ⊇ Der(lJa

2n+1).
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2.2 The real case

Irreducible polynomials in R[x] have degree one or two. Let f(x) ∈ R[x] be an
irreducible monic polynomial. If f(x) = x− a, then we obtain the same results
of the complex case. So we suppose that f(x) = x2+Cx+D, with C2−4D < 0.

Let z = a + ib ∈ C \ R be a root of f(x). Then f(x) = (x − z)(x − z̄) and
the companion matrix A of f(x)n in similar to the 2n× 2n real block matrix

JR =




R 0 · · · 0
I2 R · · · 0
...

. . .
. . .

...
0 · · · I2 R


 ,

where

R =

(
a b
−b a

)

is the realification of the complex number z. Thus lA4n+1
∼= l

JR

4n+1 and l
JR

4n+1

is the realification of the complex algebra l
Jz

2n+1. In [4] the derivations of
the realification of the (2n + 1)−dimensional Heisenberg Lie algebra h2n+1

were studied. We want to find the conditions such that the realification of a
derivation of the complex algebra l

Jz

2n+1, with z = a+ ib ∈ C \R, is a derivation
of the real algebra l

JR

4n+1. We will investigate the case n = 1.

Let {e1, f1, e2, f2, z} be a basis of the real algebra lR5 . The non-trivial com-
mutators are

[ei, fi] = (1 + a)z, [fi, ei] = (−1 + a)z, ∀i = 1, 2,

[e1, f2] = [f2, e1] = bz, [e2, f1] = [f1, e2] = −bz

and it comes out that a general derivation of lR5 is represented by the matrix




α1 0 α2 0 0
0 β1 0 α2 0

−α2 0 α1 0 0
0 −α2 0 β1 0
µ1 ν1 µ2 ν2 α1 + β1




if a 6= 0 and by 


α1 δ α2 0 0
δ′ β1 0 α2 0

−α2 0 α1 δ 0
0 −α2 δ′ β1 0
µ1 ν1 µ2 ν2 α1 + β1




if a = 0. Then
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• if a 6= 0, Der(lR5 ) is generated by the set

{x, y, E,A1, A2, B1, B2},

where x = e11 + e33 + e55, y = e22 + e44 + e55, E = e13 + e24 − e31 − e42,
Ai = e5,2i−1 and Bi = e5,2i, for every i = 1, 2, and the non-trivial Lie
brackets are

[x,Bi] = Bi, [y,Ai] = Ai, ∀i = 1, 2,

[E,A1] = −A2, [E,A2] = −A1,

[E,B1] = −B2, [E,B2] = −B1.

Then we have a solvable Lie algebra with abelian commutator ideal gen-
erated by

{A1, A2, B1, B2},

which coincides with the ideal Inn(lR5 ) and with the nilradical of the Lie
algebra itself. Moreover the center Z(Der(lR5 )) is trivial.

• if a = 0, a basis of Der(lR5 ) is

{x, y, E, F,G,A1, A2, B1, B2},

where x, y, E,A1, A2, B1, B2 are defined as above, F = e12 + e34, G =
e21 + e43 and the non-trivial Lie brackets are given by the ones above and
by

[x, F ] = F, [x,G] = −G, [y, F ] = −F, [y,G] = −G,

[F,G] = x− y, [F,Ai] = −Bi, [F,Bi] = −Ai, ∀i = 1, 2.

It follows that Z(Der(lR5 )) = 0 and the Lie algebra is not solvable. Its
radical is given by the ideal

R = 〈x+ y, E,A1, A2, B1, B2〉,

a Levi complement is the semisimple Lie algebra

S = 〈x− y, F,G〉

and the nilradical of Der(lR5 ) is the abelian four-dimensional algebra

N = 〈A1, A2, B1, B2〉 ∼= R4

and again it coincides with the set of inner derivations of lR5 .

Now let 

α 0 0
0 β 0
µ ν α+ β
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be a derivation of the complex Heinseberg algebra lz3, where z = a + ib. Then
its realification is represented by the matrix




ℜ(α) ℑ(α) 0 0 0
−ℑ(α) ℜ(α) 0 0 0

0 0 ℜ(β) ℑ(β) 0
0 0 −ℑ(β) ℜ(β) 0
µ1 ν1 µ2 ν2 γ




and this is a derivation of the real Heisenberg Leibniz algebra lR5 if and only if

α = β ∈ R

in both cases that a 6= 0 or a = 0. Then the set of realifications of the derivations
of lz3 that are derivations of the real algebra lR5 form the proper Lie subalgebra
of the matrices of the form




α 0 0 0 0
0 α 0 0 0
0 0 α 0 0
0 0 0 α 0
µ1 ν1 µ2 ν2 2α




of Der(lR5 ).

3 Derivations of the Kronecker Leibniz algebra

kn

Now we return to the case that F is a field with char(F) 6= 2. Let n ∈ N and let
kn be the Kronecker Leibniz algebra. We fix the basis {e1, . . . , en, f1, . . . , fn, z}
of kn.

Theorem 3.1. A linear endomorphism d : kn → kn is a derivation of the Kro-
necker algebra kn if and only if it has the form



A C 0
B D 0
µ ν γ




where

A =




α1 α2 α3 . . . αn

0 α1 α2 . . . αn−1

0 0 α1 . . . αn−2

...
...

...
. . .

...
0 0 0 . . . α1




, D =




β1 0 0 . . . 0
−α2 β1 0 . . . 0
−α3 −α2 β1 . . . 0
...

...
...

. . .
...

−αn −αn−1 −αn−2 . . . β1




,
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B =




0 0 0 0 . . . 0 0 0 bn+1

0 0 0 0 . . . 0 0 −bn+1 0
0 0 0 0 . . . 0 bn+1 0 bn+3

0 0 0 0 . . . −bn+1 0 −bn+3 0
...

...
...

... . .
. ...

...
...

...
0 0 0 bn+1 . . . 0 b2n−5 0 b2n−3

0 0 −bn+1 0 . . . −b2n−5 0 −b2n−3 0
0 bn+1 0 bn+3 . . . 0 b2n−3 0 b2n−1

−bn+1 0 −bn+3 0 . . . −b2n−3 0 −b2n−1 0




,

C =




0 c3 0 c5 . . . 0 cn−1 0 cn+1

−c3 0 −c5 0 . . . −cn−1 0 −cn+1 0
0 c5 0 c7 . . . 0 cn+1 0 0

−c5 0 −c7 0 . . . −cn+1 0 0 0
...

...
...

... . .
. ...

...
...

...
0 cn−1 0 cn+1 . . . 0 0 0 0

−cn−1 0 −cn+1 0 . . . 0 0 0 0
0 cn+1 0 0 . . . 0 0 0 0

−cn+1 0 0 0 . . . 0 0 0 0




,

if n is even,

B =




0 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 −bn+2

0 0 0 0 . . . 0 0 bn+2 0
0 0 0 0 . . . 0 −bn+2 0 −bn+4

...
...

...
... . .

. ...
...

...
...

0 0 0 0 . . . 0 −b2n−5 0 −b2n−3

0 0 0 bn+2 . . . b2n−5 0 b2n−3 0
0 0 −bn+2 0 . . . 0 −b2n−3 0 −b2n−1

0 bn+2 0 bn+4 . . . b2n−3 0 b2n−1 0




,

C =




0 c3 0 c5 . . . cn−2 0 cn 0
−c3 0 −c5 0 . . . 0 −cn 0 0
0 c5 0 c7 . . . cn 0 0 0

−c5 0 −c7 0 . . . 0 0 0 0
...

...
...

... . .
. ...

...
...

...
−cn−2 0 −cn 0 . . . 0 0 0 0

0 cn 0 0 . . . 0 0 0 0
−cn 0 0 0 . . . 0 0 0 0
0 0 0 0 . . . 0 0 0 0




,

if n is odd and

µ = (µ1, µ2, µ3, . . . , µn), ν = (ν1, ν2, ν3, . . . , νn), γ = α1 + β1.
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Remark 3.2. Again, with the change of basis

{e1, . . . , en, f1, . . . , fn, z} 7→ {e1, f1, . . . , en, fn, z} ,

a derivation of kn is represented by the (2n+ 1)× (2n+ 1) matrix




α1 0 −α2 c3 −α3 0 · · · −αn−1 0 −αn cn+1 0
0 β1 0 0 0 0 · · · 0 0 bn+1 0 0
0 −c3 α1 0 −α2 −c5 · · · −αn−2 −cn+1 −αn−1 0 0
0 α2 0 β1 0 0 · · · −bn+1 0 0 0 0
0 0 0 c5 α1 0 · · · −αn−3 0 −αn−2 0 0
0 α1 0 α2 0 β1 · · · 0 0 −bn+3 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
0 0 0 cn+1 0 0 · · · α1 0 −α2 0 0
0 αn−1 bn+1 αn−2 0 αn−3 · · · 0 β1 −b2n−1 0 0
0 −cn+1 0 0 0 0 · · · 0 0 α1 0 0

−bn+1 αn 0 αn−1 bn+3 αn−2 · · · b2n−1 α2 0 β1 0
µ1 ν1 µ2 ν2 µ3 ν3 · · · µn−1 νn−1 µn νn α1 + β1




if n is even and




α1 0 −α2 c3 −α3 0 · · · −αn−1 cn −αn 0 0
0 β1 0 0 0 0 · · · 0 0 0 0 0
0 −c3 α1 0 −α2 −c5 · · · −αn−2 0 −αn−1 0 0
0 α2 0 β1 0 0 · · · 0 0 −bn+2 0 0
0 0 0 −c5 α1 0 · · · −αn−3 0 −αn−2 0 0
0 α3 0 α2 0 β1 · · · bn+2 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
0 cn 0 0 0 0 · · · α1 0 −α2 0 0
0 αn−1 0 αn−2 −bn+2 αn−3 · · · 0 β1 −b2n−1 0 0
0 0 0 0 0 0 · · · 0 0 α1 0 0
0 αn bn+2 αn−1 0 αn−2 · · · b2n−1 α2 0 β1 0
µ1 ν1 µ2 ν2 µ3 ν3 · · · µn−1 νn−1 µn νn α1 + β1




if n is odd.

We can now describe the main properties of the Lie algebra Der(kn).

• If n is even, then Der(kn) has basis

{x, y, E1, . . . , En−1, c3, c5, . . . , cn+1, bn+1, bn+3 . . . , b2n−1, A1, . . . , An, B1, . . . , Bn},
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where

x =

n∑

k=1

e2k−1,2k−1 + e2k+1,2k+1,

y =
n∑

k=1

e2k,2k + e2k+1,2k+1,

Ei =
n−i+1∑

k=0

(e2(k+i+1),2(k+1) − e2k+1,2(k+i)+1), ∀i = 1, . . . , n− 1,

Ai = e2n+1,2i−1, Bi = e2n+1,2i, ∀i = 1, . . . , n,

ch =

h−2∑

i=0

(−1)i+1e2(h−i−1)−1,2(1+i), ∀h = 3, 5, . . . , n+ 1,

bh =

2n−h∑

i=0

(−1)i+1e2(n−i),2(h−n+i)−1, ∀h = n+ 1, n+ 3, . . . , 2n− 1,

and

[x,Bi] = Bi, [y,Ai] = Ai, ∀i = 1, . . . , n,

[Ei, Bk] = −Bk−2i, k > 2i,

[Ei, Ak] = Ak+2i, k + 2i ≤ 2n,

[x, ch] = ch, [y, ch] = −ch, ∀h = 3, 5, . . . , n+ 1,

[x, bh] = −bh, [y, bh] = bh, ∀h = n+ 1, n+ 3, . . . , 2n− 1,

[Ai, ck] = (−1)i+1Bk−i, [Bi, bk] = (−1)i+1Ak−i, 1 ≤ k − i ≤ n,

[ck, bh] = Eh−k, h− k ≥ 1,

[cn+1, bn+1] = −x+ y,

[E2i, ch] = −2ch−2i, h− 2i > 0,

[E2i, bh] = 2bh+2i, h+ 2i ≤ 2n.

The commutator ideal of Der(kn) has basis

{x−y, E2, E4, . . . , En−2, c3, c5, . . . , cn+1, bn+1, bn+3 . . . , b2n−1, A1, . . . , An, B1, . . . , Bn}

and, as in the case of the Heisenberg Leibniz algebra l
J0

2n+1 with n odd,
we have that the Lie algebra of derivations is not solvable. The Levi
decomposition is

Der(kn) = R⋊ S,

where

R = 〈x+y, E1, . . . , En−1, c3, c5, . . . , cn−1, bn+3, bn+5 . . . , b2n−1, A1, . . . , An, B1, . . . , Bn〉

is the radical and
S = 〈x − y, cn+1, bn+1〉
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is a Levi complement. Moreover the nilradical of Der(kn) is

N = 〈E1, . . . , En−1, c3, c5, . . . , cn−1, bn+3, bn+5 . . . , b2n−1, A1, . . . , An, B1, . . . , Bn〉.

• If n is odd, then the algebra of derivations of kn has dimension 4n and it
is generated by

{x, y, E1, . . . , En−1, c3, c5, . . . , cn, bn+2, bn+4 . . . , b2n−1, A1, . . . , An, B1, . . . , Bn}.

The Lie brackets are the same of the ones listed before when n is even,
except for the facts that x−y does not belong to the commutator ideal and
[Bi, bk] = (−1)iAk−i, for any 1 ≤ k − i ≤ n. In this case the commutator
ideal is the subspace generated by

{E2, E4, . . . , En−1, c3, c5, . . . , cn, bn+2, bn+4 . . . , b2n−1, A1, . . . , An, B1, . . . , Bn}

and we have a (n+1
2 + 1)−step solvable Lie algebra with nilradical

N = 〈E1, . . . , En−1, c3, c5, . . . , cn, bn+2, bn+4 . . . , b2n−1, A1, . . . , An, B1, . . . , Bn〉.

In both cases n is odd or even, the center Z(Der(lJ0

2n+1)) is trivial, the Lie algebra
of inner derivations is

Inn(kn) = 〈A1, . . . , An, B1, . . . , Bn〉 ∼= F2n,

since
adei = Bi−1 +Bi, adfi = Ai +Ai+1, ∀i = 1, . . . , n

and
Der(h2n+1) ⊇ Der(kn) ⊇ Der(lJa

2n+1),

for any a 6= 0. More precisely

Der(lJ0

2n+1) ∩Der(kn) = Der(lJa

2n+1).

4 Derivations of the Dieudonné Leibniz algebra

dn

Finally we study the derivations of the Dieudonné Leibniz algebra dn. We fix
the basis {e1, . . . , e2n+1, z} of dn.

Theorem 4.1. A derivation of dn is represented by a (2n+2)× (2n+2) matrix




0

αIn+1 C
...
0
0

0 βIn
...
0

µ1 . . . µn+1 ν1 . . . νn α+ β
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where the (n+ 1)× n matrix C is




α1 0 α2 0 α3 0 · · · αn
2

0
0 −α2 0 −α3 0 −α4 · · · 0 −αn

2
+1

α2 0 α3 0 α4 0 · · · αn
2
+1 0

0 −α3 0 −α4 0 −α5 · · · 0 −αn
2
+2

...
...

...
...

...
...

...
...

0 −αn
2
+1 0 −αn

2
+2 0 −αn

2
+3 · · · 0 −αn

αn
2
+1 0 αn

2
+2 0 αn

2
+3 0 · · · αn 0




if n is even and




α1 0 α2 0 α3 0 · · · 0 αn+1

2

0 −α2 0 −α3 0 −α4 · · · −αn+1

2

0

α2 0 α3 0 α4 0 · · · 0 αn+1

2
+1

0 −α3 0 −α4 0 −α5 · · · −αn+1

2
+1 0

...
...

...
...

...
...

...
...

αn+1

2

0 αn+1

2
+1 0 αn+1

2
+2 0 · · · 0 αn

0 −αn+1

2
+1 0 −αn+1

2
+2 0 −αn+1

2
+3 · · · −αn 0




if n is odd.

The Lie algebra Der(dn) has dimension 3n+ 3 and basis

{x, y, E1, . . . , En, A1, . . . , A2n+1},

where

x =
n+1∑

i=1

eii + e2n+1,2n+1,

y =
2n+2∑

i=n+2

eii, Ai = e2n+1,i, ∀i = 1, . . . , 2n+ 1,

Ei =

2i−1∑

k=1

(−1)k+1ek,n+2i+1−k, ∀i = 1, . . . ,
⌊n+ 1

2

⌋
,

En
2
+j =

n+2−2j∑

k=1

(−1)k+1en+2−k,n+2j−1+k, ∀j = 1, . . . ,
n

2
,

if n even, and

En+1

2
+j =

n+1−2j∑

k=1

(−1)ken+2−k,n+2j+k, ∀j = 1, . . . ,
n− 1

2
,
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if n is odd. The non-zero Lie brackets are

[x,Ei] = [Ei, y] = αi, ∀i = 1, . . . , n,

[y,Ah] = Ah, ∀h = 1, . . . , n+ 1,

[x,Ak] = Ak, ∀k = n+ 2, . . . , 2n+ 1,

[Ai, Ek] = εjAj , ∀i = 1, . . . , n+ 1,

where εj = ±1 is the only entry different than zero in the ith row of the matrix
αk and j ∈ {n+2, . . . , 2n+1} is its column. Thus Der(dn) is a 3−step solvable
Lie algebra with commutator ideal consisting of the matrices




0

0 C
...
0
0

0 0
...
0

µ1 . . . µn+1 ν1 . . . νn 0




The derived series is

Der(dn) ⊇ 〈E1, . . . , En, A1, . . . , A2n+1〉 ⊇ 〈An+2, . . . , A2n+1〉 ⊇ 0

and the nilradical coincides with the commutator ideal (which is a two-step
nilpotent Lie algebra). Finally Z(Der(dn)) is trivial and the left adjoint maps
are

ade1 = An+2, adei = An+i +An+i+1, ∀i = 2, . . . , n,

aden+1
= A2n+1, adej = Aj−n −Aj−n−1, ∀j = n+ 2, . . . , 2n+ 1,

thus the inner derivations of the Dieudonné algebra dn are represented by the
matrices of the form




0

0
...
0

µ1 µ2 . . . µn µ ν1 . . . νn 0




where µ = −

n∑

k=1

µk. More precisely, the matrix
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0

0
...
0

0 . . . 0 µn+1 0 . . . 0 0




does not represent an inner derivation, for every an+1 6= 0.

For example, we study Der(dn) in the case that n ≤ 3.

Example 4.2. If n = 1, then

D =




α 0 α1 0
0 α 0 0
0 0 β 0
µ1 µ2 ν1 α+ β




thus Der(d1) is the six-dimensional solvable Lie algebra with basis

{x, y, E,A1, A2, A3},

where x = e11+e22+e44, y = e33+e44, E = e1,3 and Ai = e4,i, for any i = 1, 2, 3,
and with non-trivial commutators

[x,E] = [E, y] = E, [x,A3] = A3, [y,A1] = A1, [y,A2] = A2, [A1, E] = A3.

Example 4.3. If n = 2, the derivations of d2 are of the form




α 0 0 α1 0 0
0 α 0 0 −α2 0
0 0 α α2 0 0
0 0 0 β 0 0
0 0 0 0 β 0
µ1 µ2 µ3 ν1 ν2 α+ β




and Der(d2) is a nine-dimensional Lie algebra with commutator ideal consisting
of the matrices 



0 0 0 α1 0 0
0 0 0 0 −α2 0
0 0 0 α2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
µ1 µ2 µ3 ν1 ν2 0




Example 4.4. If n = 3, then
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D =




0

αI4 C
...
0
0

0 βI3
...
0

µ1 µ2 µ3 µ4 ν1 ν2 ν3 α+ β




where

C =




α1 0 α2

0 −α2 0
α2 0 α3

0 −α3 0




and the Lie algebra Der(d3) has dimension 9 with generators

{x, y, E1, E2, E3, A1, . . . , A8},

where

x = e11 + e22 + e33 + e44 + e88, y = e55 + e66 + e77 + e88,

E1 = e1,5, E2 = e1,7 − e2,6 + e3,5, E3 = e3,7 − e2,8,

Ai = e8,i, ∀i = 1, . . . , 7

and with Lie brackets

[x,Ei] = [Ei, y] = Ei, ∀i = 1, 2, 3,

[y,Ah] = Ah, [x,Ak] = Ak ∀h = 1, 2, 3, 4, ∀k = 5, 6, 7,

[A1, E1] = A5, [A1, E2] = A7, [A2, E2] = −A6,

[A3, E2] = A5, [A3, E3] = A7, [A4, E3] = −A6.

5 Almost inner derivations of nilpotent Leib-

niz algebras with one-dimensional commutator

ideal

We recall that a derivation d of a left Leibniz algebra L is an almost inner
derivation if d(x) ∈ [L, x], for every x ∈ L. The set of all almost inner
derivations of L forms a Lie subalgebra of Der(L), denoted by AIDer(L),
containing the ideal Inn(L) of inner derivations of L.

Derivations of two-step nilpotent Lie algebras were studied in [7] and [8] by
D. Burde, K. Dekimpe and B. Verbeke. They proved that every almost inner
derivations of a Lie algebra of genus 1 (i.e. with one-dimensional commutator
ideal) is an inner derivation. We want to generalize this result in the frame of
Leibniz algebras.
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Proposition 5.1. Let L be a complex nilpotent Leibniz algebra with [L,L] =

Cz, such that L 6∼= l
J±1

2n+1 and L 6∼= dn. Then every almost inner derivation
d ∈ AIDer(L) is an inner derivation.

Proof. Let d ∈ AIDer(L). Then d(y) ∈ [L, y] ⊆ [L,L] = Cz, for any y ∈ L and
d([L,L]) = 0. Fixed a basis {e1, . . . , et−1, z} of L, where t = dimC L, we have
that

d(ei) = aiz, ∀i = 1, . . . , t− 1,

with ai ∈ F and d(z) = 0, thus d ∈ Inn(L).

For the Heisenberg Leibniz algebras lJa

2n+1 with a = ±1 (in [14] it was proved
that these two algebras are isomorphic) and for the Dieudonné Leibniz algebra
dn, it is possible to define an almost inner derivation d which is not inner. For
instance, if a = 1 and we fixed the basis {e1, f1, . . . , en, fn, z} of lJ1

2n+1, then the
matrix




0

0
...
0

1 0 . . . 0 0 0




defines a derivation d ∈ AIDer(lJ1

2n+1) \ Inn(l
J1

2n+1). In the same way




0

0
...
0

0 0 . . . 0 1 0




is an almost inner but non-inner derivation of lJ−1

2n+1. More precisely every almost

inner derivation of lJ±1

2n+1 is of the form




0

0
...
0

µ1 ν1 . . . µn νn 0




with a1, b1, . . . , an, bn ∈ C, meanwhile the inner derivations are represented by
the set of matrices

23






0

0
...
0

0 ν1 µ2 ν2 . . . µn νn 0




for l
J1

2n+1, and by




0

0
...
0

µ1 ν1 µ2 ν2 . . . µn 0 0 0




for the Leibniz algebra l
J−1

2n+1. Finally AIDer(dn) consists of the matrices of the
type




0

0
...
0

µ1 . . . µn+1 ν1 . . . νn 0




and an example of almost inner but non-inner derivations is given by the linear
map d ∈ gl(dn) defined by d(en+1) = z.
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