Let V be an L-variety of associative L-algebras, i.e., algebras where a Lie algebra L acts on them by derivations, and let c(n)(L) (V), n >= 1, be its Lcodimension sequence. If V is generated by a finite-dimensional L-algebra, then such a sequence is polynomially bounded only if V does not contain UT2, the 2 x 2 upper triangular matrix algebra with trivial L-action, and UT2 epsilon where L acts on UT2 as the 1-dimensional Lie algebra spanned by the inner derivation epsilon induced by e11. In this paper we completely classify all the L-subvarieties of var(L)(UT2) and var(L)(UT2 epsilon) by giving a complete list of finite-dimensional L-algebras generating them.

Martino, F., Rizzo, C. (2023). Differential Identities and Varieties of Almost Polynomial Growth. ISRAEL JOURNAL OF MATHEMATICS, 254(1), 243-274 [10.1007/s11856-022-2396-1].

Differential Identities and Varieties of Almost Polynomial Growth

Martino, F
Primo
;
Rizzo, C
Secondo
2023-01-01

Abstract

Let V be an L-variety of associative L-algebras, i.e., algebras where a Lie algebra L acts on them by derivations, and let c(n)(L) (V), n >= 1, be its Lcodimension sequence. If V is generated by a finite-dimensional L-algebra, then such a sequence is polynomially bounded only if V does not contain UT2, the 2 x 2 upper triangular matrix algebra with trivial L-action, and UT2 epsilon where L acts on UT2 as the 1-dimensional Lie algebra spanned by the inner derivation epsilon induced by e11. In this paper we completely classify all the L-subvarieties of var(L)(UT2) and var(L)(UT2 epsilon) by giving a complete list of finite-dimensional L-algebras generating them.
2023
Martino, F., Rizzo, C. (2023). Differential Identities and Varieties of Almost Polynomial Growth. ISRAEL JOURNAL OF MATHEMATICS, 254(1), 243-274 [10.1007/s11856-022-2396-1].
File in questo prodotto:
File Dimensione Formato  
martino_rizzo.pdf

Open Access dal 30/11/2023

Tipologia: Post-print
Dimensione 380.54 kB
Formato Adobe PDF
380.54 kB Adobe PDF Visualizza/Apri
Differential identities and varieties of almost polynomial growth.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 293.48 kB
Formato Adobe PDF
293.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/585092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact