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Abstract. Let V be an L-variety of associative L-algebras, i.e., algebras where a Lie algebra L acts on

them by derivations, and let cLn(V), n ≥ 1, be its L-codimension sequence. If V is generated by a finite

dimensional L-algebra, then such a sequence is polynomially bounded if and only if V does not contain
UT2, the 2× 2 upper triangular matrix algebra with trivial L-action, and UT ε

2 where L acts on UT2 as the

1-dimensional Lie algebra spanned by the inner derivation ε induced by e11. In this paper we completely
classify all the L-subvarieties of varL(UT2) and varL(UT ε

2 ) by giving a complete list of finite dimensional

L-algebras generating them.

1. Introduction

Let F be a field of characteristic zero, let F 〈X〉 be the free associative algebra on a countable set X
of variables over F and let A be an associative F -algebra. A polynomial of F 〈X〉 vanishing under every
evaluation in A is called a polynomial identity of A and we denote by Id(A) the T -ideal of polynomial
identities satisfied by A. One of the most challenging problem in the theory of algebras with polynomial
identities (PI theory) is to find some numerical invariants allowing us to classify such T -ideals of F 〈X〉.
Since there is a one-to-one correspondence between T -ideals and varieties of algebras, often it is convenient
to translate a given issue about T -ideals into the language of varieties of algebras.

If Pn is the space of multilinear polynomials in the variables x1, . . . , xn, then we set

cn(A) = dimF
Pn

Pn ∩ Id(A)
,

for all n ≥ 1, and we call it the codimension sequence of A. If V is a variety of algebras and Id(V) is its
corresponding T -ideal, then we can similarly define cn(V). Moreover, if V = var(A) is the variety generated
by the algebra A, then we refer to the codimension sequence of V as the one of A. Such a numerical sequence
was introduced by Regev in [28] and it measures the rate of growth of the multilinear polynomials lying in the
corresponding T -ideal. In the same paper, Regev also showed that if A is an associative algebra satisfying a
non-trivial polynomial identity, then cn(A) is exponentially bounded. Later on, Kemer in [18] and [19] proved
several properties about the codimension sequence. On one hand, he showed that cn(A) is polynomially
bounded or grows exponentially, on the other he gave a characterization of the varieties of polynomial
growth of the codimension proving that cn(A) is polynomially bounded if and only if G,UT2 /∈ var(A),
where G is the infinite dimensional Grassmann algebra and UT2 is the algebra of 2 × 2 upper triangular
matrices. Hence var(G) and var(UT2) are the only varieties of almost polynomial growth, i.e., they grow
exponentially but any proper subvariety grows polynomially.

Varieties of poylnomial growth were extensively studied in the past years in various settings. We refer
the interested reader to [5], [6], [22] for some results about ordinary algebras; to [8], [23], [24], [32] for
superalgebras and more generally group graded algebras; to [3], [7], [10], [20], [21], [25] for algebras with
involution, graded involution, superinvolution and pseudoinvolution; to [27] for special Jordan algebras.

In this paper we deal with associative algebras with a Lie algebra action by derivations. If L is such a Lie
algebra, then its action can be naturally extended to the action of the universal enveloping algebra U(L) of
L and in this case we say that the algebra A is an algebra with derivations or an L-algebra. In this context it
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is natural to define the differential identities of A, i.e. the polynomials in the variables xh = h(x), h ∈ U(L),
vanishing on A. In analogy with the ordinary case, one defines the sequence of L-codimensions and studies
their asymptotic behaviour. In [13] it was proved that, in case of finite dimensional L-algebras, the sequence
of L-codimensions is exponentially bounded or grows polynomially. Moreover, in [9] the authors studied the
algebra UT ε2 of 2× 2 upper triangular matrices with the action of the 1-dimensional Lie algebra spanned by
the inner derivation ε induced by e11. In that paper, they show that such algebra generates an L-variety of
almost polynomial growth. Finally, in [31] it was proved that the L-codimension sequence of an L-variety
V generated by a finite dimensional L-algebra is polynomially bounded if and only if UT2, UT

ε
2 /∈ V, where

UT2 stands for the algebra of 2× 2 upper triangular matrices and L acts trivially on it.
The main purpose of this paper is to classify, up to PI-equivalence, all the L-subvarieties of varL(UT2) and

varL(UT ε2 ) in terms of generators of the corresponding TL-ideals and to provide a complete list of L-algebras
generating such L-subvarieties. Concerning varL(UT ε2 ), the main result is given by Theorem 28 below. We
also highlight that if L acts trivially on UT2, then such a classification coincides to the one of the ordinary
case given in [22]. We chose to include it here for sake of completeness.

2. On differential identities

Throughout this paper F will denote a field of characteristic zero and L a Lie algebra over F .
Recall that a derivation of an associative algebra A is a linear map δ : A→ A such that (ab)δ = aδb+abδ,

for all a, b ∈ A. In particular, an inner derivation induced by a ∈ A is the derivation ada acting on the left
on A by bada = [a, b] = ab− ba, for all b ∈ A. Clearly, the set Der(A) of all derivations of A is a Lie algebra.

Let U(L) be the universal enveloping algebra of L. By the Poincaré–Birkhoff–Witt Theorem, if L has a
ordered basis {δi | i ∈ I}, then U(L) has a basis {δi1 · · · δip | i1 < · · · < ip, ik ∈ I, p ≥ 0}. Thus if A is
an associative F -algebra with an L-action by derivations, then this action can be naturally extended to an
U(L)-action. In this case we call A algebra with derivations or L-algebra.

Let X = {x1, x2, . . . } be a countable set and B = {dj | j ≥ 0} be a basis of U(L). We denote by F 〈X|L〉
the free associative algebra over F with free formal generators x

dj
i , i > 0 and j ≥ 0, where we identify

xi = x1
i , 1 = d0 ∈ U(L). Notice that U(L) acts on F 〈X|L〉 by setting

(x
dj1
i1
x
dj2
i2

. . . x
djn
in

)δ = x
δdj1
i1

x
dj2
i2

. . . x
djn
in

+ x
dj1
i1
x
δdj2
i2

. . . x
djn
in

+ · · ·+ x
dj1
i1
x
dj2
i2

. . . x
δdjn
in

,

where δ ∈ L and x
dj1
i1
x
dj2
i2

. . . x
djn
in
∈ F 〈X|L〉. Thus we call F 〈X|L〉 the free associative algebra with deriva-

tions on X over F and we refer to its elements as differential polynomials or L-polynomials.
Let A be an L-algebra over F . Recall that an L-polynomial f(x1, . . . , xn) ∈ F 〈X|L〉 is a differential

polynomial identity of A (or simply an L-identity), and we write f ≡ 0, if f(a1, . . . , an) = 0 for all ai ∈ A,

1 ≤ i ≤ n. We denote by IdL(A) = {f ∈ F 〈X|L〉 | f ≡ 0 on A} the TL-ideal of L-identities of A, i.e.,

IdL(A) is an ideal of F 〈X|L〉 invariant under all endomorphisms ϕ of F 〈X|L〉 such that ϕ(fh) = ϕ(f)h, for
all f ∈ F 〈X|L〉 and h ∈ U(L) (see for example [14, 17, 29, 30]).

Let H be a Lie subalgebra of L. If A is an L-algebra, then by restricting the action, A can be regarded
as a H-algebra. In this case we can identify the TL-ideal IdL(A) and the TH -ideal IdH(A), i.e., in IdL(A)
we omit the differential identities xδ ≡ 0, for all δ ∈ L\H. Furthermore, any algebra A can be regarded as
L-algebra by letting L act on A trivially, i.e., L acts on A as the trivial Lie algebra. Hence the theory of
differential identities generalizes the ordinary theory of polynomial identities.

As in the ordinary case, in characteristic zero, every L-identity is equivalent to a system of multilinear
ones. We denote by

PLn = span{xdi1σ(1) . . . x
din
σ(n) | σ ∈ Sn, dik ∈ B}

the vector space of multilinear differential polynomials in the variables x1, . . . , xn, n ≥ 1. Since IdL(A) is

generated, as TL-ideal, by the multilinear L-polynomials it contains, the study of IdL(A) is equivalent to the

study of PLn ∩ IdL(A) for all n ≥ 1. In case U(L) acts on A as a suitable finite dimensional subalgbera of the
endomorphism ring of A, then PLn is finite dimensional and we denote by

cLn(A) = dimF
PLn

PLn ∩ IdL(A)
, n ≥ 1,
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the nth differential codimension of A or the nth L-codimension of A. From now on, we will assume that the
action of U(L) is always of this type.

Given a variety V of L-algebras the growth of V is defined as the growth of the sequence of differential
codimensions of any L-algebra A generating V, i.e., V = varL(A). In this case we set cLn(V) = cLn(A), n ≥ 1.
Then we say that V has polynomial growth if there exist C, t such that cLn(V) ≤ Cnt and that V has almost
polynomial growth if cLn(V) is not polynomially bounded but every proper subvariety has polynomial growth.

In [31] the authors proved that there exists only two L-varieties generated by finite dimensional L-algebras
of almost polynomial growth. Next we are going to describe such varieties.

Let us denote by UT2 the L-algebra of 2 × 2 upper triangular matrices over F where L acts trivially on
it. Since xδ ≡ 0, for all δ ∈ L, is a differential identity of UT2, we are dealing with ordinary identities. Thus
by [19], it follows that the algebra UT2 generates an L-variety of almost polynomial growth. Moreover, we
have the following result (see [26]).

Theorem 1.

1. IdL(UT2) = 〈[x1, x2][x3, x4]〉TL ;
2. cLn(UT2) = 2n−1(n− 2) + 2.

Let now denote by UT ε2 the L-algebra of 2× 2 upper triangular matrices over F where L acts on it as the
1-dimensional Lie algebra spanned by the inner derivation ε induced by e11, i.e.

(ae11 + be22 + ce12)ε = ce12,

for all a, b, c ∈ F , where eij ’s are the usual matrix units. In [9], the authors proved that UT ε2 has almost
polynomial growth and also they proved the following.

Theorem 2. [9, Theorem 5]

1. IdL(UT ε2 ) = 〈xε21 − xε1, xε1xε2, [x1, x2]ε − [x1, x2]〉TL ;
2. cLn(UT ε2 ) = 2n−1n− 1.

The above algebras characterize the L-varieties of polynomial growth.

Theorem 3. [31, Theorem 18] Let A be a finite dimensional L-algebra. Then the sequence cLn(A), n ≥ 1, is
polynomially bounded if and only if UT2, UT

ε
2 /∈ varL(A).

Recall that given two L-algebras A and B, A is TL-equivalent to B and we write A ∼TL B in case

IdL(A) = IdL(B). Thus as a consequence of the above theorem, we have that the algebras UT2 and UT ε2 are
the only two finite dimensional L-algebras, up to TL-equivalence, generating L-varieties of almost polynomial
growth.

As in the ordinary case, a useful tool when studying L-identities of algebras with 1 is provided by the
so-called proper polynomials.

Recall that a left normed commutator of length n ≥ 2 in the variables xi’s is defined inductively by setting

[xh1
1 , . . . , x

hn−1

n−1 , x
hn
n ] = −[xh1

1 , . . . , x
hn−1

n−1 ]
ad
x
hn
n ,

where h1, . . . hn ∈ U(L). An L-polynomial f(x1, . . . , xn) ∈ F 〈X|L〉 is a proper L-polynomial if it is a linear
combination of elements of the type

xh1
i1
. . . xhkik w1 . . . wm

where hi ∈ U(L), hi 6= 1U(L), for all 1 ≤ i ≤ k, and w1, . . . , wm are (eventually empty) left normed Lie
commutators in xi’s.

In characteristic zero, if A is an unitary L-algebra, then IdL(A) is generated, as TL-ideal, by the multilinear
proper L-polynomials (see [1, Lemma 2.1]). Thus if ΓLn denotes the subspace of PLn of multilinear proper
L-polynomials in n ≥ 1 variables, and ΓL0 = span{1}, then we define the sequence of proper L-codimensions
of A as

γLn (A) = dimF
ΓLn

ΓLn ∩ IdL(A)
, n ≥ 0.
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For unitary L-algebra A, the relation between the L-codimensions and the proper L-codimensions is given
by the following

cLn(A) =

n∑
i=0

(
n

i

)
γLi (A), n ≥ 1.

This relation can be proved following closely the proof in the ordinary case in Theorem 4.3.1 of [2].
Next we present a result on proper L-polynomials which will be useful later. Recall that given two sets

of L-polynomials S, S′ ⊆ F 〈X|L〉, we say that S′ is a consequence of S if S′ ⊆ 〈S〉TL .

Proposition 4. Let i ≥ 1. If k is even, then ΓLk+i is a consequence of ΓLk . Otherwise, ΓLk+i is a consequence

of ΓLk plus the polynomial [x1, x2] · · · [xk, xk+1].

Proof. We start by proving the statement in case k is even.
Let w ∈ ΓLk+i be a generator and i ≥ 1. Suppose first that w is a product of commutators. If w is a

product of commutators of length 2, then

w = [xh1
1 , xh2

2 ] · · · [xhk−1

k−1 , x
hk
k ] · · · [xhk+i−1

k+i−1 , x
hk+i
k+i ],

where h1, . . . , hk+i ∈ U(L). Thus w is a consequence of [xh1
1 , xh2

2 ] · · · [xhk−1

k−1 , x
hk
k ] ∈ ΓLk and we are done.

On the other hand, if w contains a commutator u of length m > 2, then u can be viewed as a consequence
of a commutator of length < m. Thus by the above, we get also that w is a consequence of ΓLk . Hence

we may assume that w = xh1
i1
· · ·xhtit [· · · ] · · · [· · · ] with t > 0 and h1, . . . , ht ∈ U(L). If t ≤ i, then by the

previous case, w is a consequence of ΓLk . Otherwise, if t > i, then w is a consequence of the polynomial

xhrir · · ·x
ht
it

[· · · ] · · · [· · · ], where r = i+ 1, and we are done also in this case.
Now suppose that k is odd.
If we prove that ΓLk+1 is a consequence of ΓLk and the polynomial [x1, x2] · · · [xk, xk+1], by the first part

of the proof we reach the desired conclusion. Thus let w ∈ ΓLk+1 be a generator. If either w contains a

commutator of length greater than 2 or w = xh1
i1
· · ·xhtit [· · · ] · · · [· · · ] with t > 0, h1, . . . , ht ∈ U(L), we have,

as above, that w is a consequence of ΓLk . Thus we may assume that w is product of commutators of length
2, i.e.,

w = [xh1
1 , xh2

2 ] · · · [xhkk , x
hk+1

k+1 ],

where h1, . . . , hk+1 ∈ U(L). If hi ∈ spanF {1U(L)} for all 1 ≤ i ≤ k + 1, then w = β[x1, x2] · · · [xk, xk+1], for
some β ∈ F, and we are done. Hence we may assume that hi /∈ spanF {1U(L)}, for some i. We write

w =[xh1
1 , xh2

2 ] · · · [xhi−3

i−3 , x
hi−2

i−2 ]xhii x
hi+1

i+1 [x
hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ]

− [xh1
1 , xh2

2 ] · · · [xhi−3

i−3 , x
hi−2

i−2 ]x
hi+1

i+1 x
hi
i [x

hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ].

Since yz = [y, z] + zy and a commutator of length m > 2 is a consequence of a commutator of length < m,
then

w ≡(xhii x
hi+1

i+1 [xh1
1 , xh2

2 ] · · · [xhi−3

i−3 , x
hi−2

i−2 ][x
hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ]

− xhi+1

i+1 x
hi
i [xh1

1 , xh2
2 ] · · · [xhi−3

i−3 , x
hi−2

i−2 ][x
hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ]) (mod 〈Γk〉TL).

If hi+1 /∈ spanF {1U(L)}, then w is a consequence of yh[xh1
1 , xh2

2 ] · · · [xhi−3

i−3 , x
hi−2

i−2 ][x
hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ] ∈ ΓLk
and we are done. Hence suppose that hi+1 = 1U(L), then

w ≡ xhii xi+1[xh1
1 , xh2

2 ] · · · [xhi−3

i−3 , x
hi−2

i−2 ][x
hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ] (mod 〈Γk〉TL).

Without loss of generality, we may assume that hi = δ1 · · · δs, where δ1, . . . , δs ∈ L. Let I = {i1, . . . , ir} and
J = {j1, . . . , jt} be two disjoint sets such that I∪J = {1, . . . , s}, i1 < · · · < ir and j1 < · · · < jt, respectively.
We set cI = δi1 · · · δir and cJ = δj1 · · · δjt , then by definition of derivation, we have the following

xhii xi+1 = (xixi+1)hi − xixhii+1 −
∑
I,J

xcIi x
cJ
i+1.

Since cI , cJ ∈ U(L) for all I, J , it follows that w is a consequence of

yh[xh1
1 , xh2

2 ] · · · [xhi−3

i−3 , x
hi−2

i−2 ][x
hi+1

i+1 , x
hi+2

i+2 ][xhkk , x
hk+1

k+1 ] ∈ ΓLk
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and this completes the proof. �

As a consequence we have the following.

Corollary 5. Let A be an L-algebra with 1. If γLk (A) = 0 for some k ≥ 1, then γLm(A) = 0 for all m ≥ k.

Remark that these results are general facts not related to the L-identities of UT2.
One of the main tool in the study of TL-ideals is the representation theory of the symmetric group

Sn. In fact, the natural left Sn-action σ(xhi ) = xhσ(i) turns PLn into a Sn-module and therefore the space

PLn (A) = PLn /(P
L
n ∩ IdL(A)) becomes a left Sn-module. Similarly ΓLn(A) = ΓLn/(Γ

L
n ∩ IdL(A)) is an Sn-

module under the induced action. We denote by χLn(A) and ψLn (A) the Sn-characters of PLn (A) and ΓLn(A),
respectively, and we refer to them as the nth L-cocharacter and the nth proper L-cocharacter of A. Since
charF = 0, by complete reducibility we can write

χLn(A) =
∑
λ`n

mλχλ, ψLn (A) =
∑
λ`n

m′λχλ,

where λ is a partition of n, χλ is the irreducible Sn-character associated to λ, and mλ,m
′
λ ≥ 0 are the

corresponding multiplicities. It is clear that by knowing the decomposition of the (proper) cocharacter of A,
one can get informations about the corresponding (proper) codimensions.

3. Constructing L-subvarieties in varL(UT ε2 )

The main goal of this section is to construct some suitable finite dimensional L-algebras belonging to the
L-variety generated by UT ε2 whose L-codimension sequence grows polynomially.

For all k ≥ 2 let

Aεk = spanF

{
e11, E,E

2, . . . , Ek−2, e12, e13, . . . , e1k

}
be the subalgebra of UTk(F ) where E =

∑k−1
i=2 ei,i+1 and L acts on Aεk as the 1-dimensional Lie algebra

spanned by the derivation ε = ade11 . Remark that eε11 = (Ej)ε = 0, for all 1 ≤ j ≤ k − 2, and eε1i = e1i, for
all 2 ≤ i ≤ k.

We also denote by (Aεk)∗ the subalgebra of UTk(F ) obtained by flipping Aεk along its secondary diagonal.
Hence

(Aεk)∗ = spanF

{
ekk, E,E

2, . . . , Ek−2, e1k, e2k, . . . , ek−1,k

}
.

In this case, L acts on (Aεk)∗ as the 1-dimensional Lie algebra spanned by the derivation ε = adekk . Notice
that one can determine the L-polynomial identities of such an L-algebra via the ones of Aεk. In fact, if
f ∈ F 〈X|L〉 and f∗ is the L-polynomial obtained by reversing the order of the variables in each monomial

of f, then one can easily check that f ∈ IdL(Aεk) if and only if f∗ ∈ IdL((Aεk)∗). Notice that such kind of
algebras was first studied in the ordinary case in [5]

In what follows, we explicitly describe the L-identities of Aεk and (Aεk)∗ for any k ≥ 2.

Lemma 6 ([30], Theorem 3). Let k = 2, then:

1. IdL(Aε2) = 〈xε
2

1 − xε1, xε1x2, x1x
ε
2 − x2x

ε
1 − [x1, x2]〉TL ;

2. IdL((Aε2)∗) = 〈xε
2

1 − xε1, x1x
ε
2, x

ε
1x2 − xε2x1 − [x1, x2]〉TL ;

3. cLn(Aε2) = cLn((Aε2)∗) = n+ 1.

Lemma 7. Let k ≥ 3, then:

1. IdL(Aεk) = 〈xε
2

1 − xε1, xε1xε2, [x1, x2]ε − [x1, x2], xε1x2 · · ·xk〉TL ;

2. cLn(Aεk) = 2 + n+

k−2∑
l=0

(
n

l

)
(n− l + 1) +

k−2∑
l=1

n−l+1∑
j=2

(
n− j
l − 1

)
(j − 1) ≈ qnk−1, for some q > 0.

Hence IdL((Aεk)∗) = 〈xε
2

1 −xε1, xε1xε2, [x1, x2]ε− [x1, x2], x1 · · ·xk−1x
ε
k〉TL and cLn((Aεk)∗) = cLn(Aεk) ≈ qnk−1.

Proof. Write I = 〈xε21 − xε1, xε1xε2, [x1, x2]ε − [x1, x2], xε1x2 · · ·xk〉TL . It is clear that I ⊆ IdL(Aεk). In order
to prove the opposite inclusion, first we find a set of generators of PLn modulo PLn ∩ I, for all n ≥ 1.

Let f ∈ PLn be a multilinear L-polynomial of degree n. Because of the L-identities xε
2

1 − xε1 ≡ 0 and
xε1x

ε
2 ≡ 0, in each monomial of f can occur at most one differential variable xεj . Moreover, [x1, x2]xε3 ≡ 0
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and xε3[x1, x2] ≡ 0 are a consequences of xε1x
ε
2 ≡ 0 and [x1, x2]ε − [x1, x2] ≡ 0. Furthermore, from [x1, x2]ε −

[x1, x2] ≡ 0 and xε1x2 · · ·xk ≡ 0, it follows also [x1, x2]x3 · · ·xk+1 ≡ 0. Finally, since [x1, x2][x3, x4] ≡ 0 is
a consequence of xε1x

ε
2 ≡ 0 and [x1, x2]ε − [x1, x2] ≡ 0, every left normed commutator [xj1 , . . . , xjt ] can be

written as a linear combination of [xi1 , . . . , xit ] where i1 > i2 < . . . < it (see for instance [2, Theorem 5.2.1]).
By taking into account the previous remarks plus the Poincaré-Birkhoff-Witt theorem, modulo I, f is a

linear combination of L-polynomials of the type

x1 · · ·xn, xi1 · · ·xit [xi, xj ]xj1 · · ·xjl ,
x2 · · ·xnxε1, xp1 · · ·xprxεmxq1 · · ·xqs ,

(1)

where t+ l = n−2, r+ s = n−1, l < k−1, s < k−1, i > j < i1 < . . . < it, j1 < . . . < jl, m < p1 < . . . < pr
and q1 < . . . < qs. It follows that the space PLn is generated modulo PLn ∩ I by the above polynomials.

We next show that they are linearly independent modulo IdL(Aεk). To that end, let f ∈ IdL(Aεk) be a
linear combination of such polynomials and write

f = αx1 · · ·xn+βx2 · · ·xnxε1+
∑
l<k−1

∑
I,J

αI,Jxi1 · · ·xit [xi, xj ]xj1 · · ·xjl+
∑
s<k−1

∑
P,Q

βP,Qxp1 · · ·xprxεmxq1 · · ·xqs ,

where I = {i, j, i1, . . . , it}, J = {j1, . . . , jl}, P = {m, p1, . . . , pr} and Q = {q1, . . . , qs} are disjoint sets of
indices subjected to the above conditions.

First suppose that α 6= 0, then by making the evaluation x1 = · · · = xn = e11 one gets α = 0, a
contradiction.

Suppose that there exists αI,J 6= 0 for some l < k − 1, I and J. Then by making the evaluation xi = e12,
xj = xi1 = · · · = xit = e11 and xj1 = · · · = xjl = E, we get αI,J = 0, a contradiction.

Now suppose that β 6= 0, then if one considers the evaluation x1 = e12 and x2 = · · · = xn = e11, we get
β = 0, a contradiction.

Finally, if βP,Q 6= 0 for some s < k − 1, P and Q, then let xm = e12, xp1 = · · · = xpr = e11 and
xq1 = · · · = xqs = E, obtaining βP,Q = 0, a contradiction.

Therefore the elements in (1) are linearly independent modulo PLn ∩ IdL(Aεk) and, since PLn ∩ IdL(Aεk) ⊇
PLn ∩ I, they form a basis of PLn modulo PLn ∩ IdL(Aεk) and IdL(Aεk) = I.

Thus, by counting we get

cLn(Aεk) = 2 + n+

k−2∑
l=0

(
n

l

)
(n− l + 1) +

k−2∑
l=1

n−l+1∑
j=2

(
n− j
l − 1

)
(j − 1) ≈ qnk−1,

for some q > 0 and we are done.

Notice that, from the previous results, it follows also that IdL((Aεk)∗) = 〈xε21 − xε1, x
ε
1x
ε
2, [x1, x2]ε −

[x1, x2], x1 · · ·xk−1x
ε
k〉TL and cLn((Aεk)∗) = cLn(Aεk) ≈ qnk−1. �

We now introduce, for any fixed k ≥ 2, a unitary L-algebra in varL(UT ε2 ) which codimension sequence
grows as nk−1.

To this end, for all k ≥ 2, let

Nε
k = spanF

{
I, E,E2, . . . , Ek−2, e12, e13, . . . , e1k

}
where I is the identity k × k matrix and L acts on Nε

k as the 1-dimensional Lie algebra spanned by the
derivation ε = ade11 . In this case Iε = (Ej)ε = 0, for all 1 ≤ j ≤ k − 1, and eε1i = e1i, for all 2 ≤ i ≤ k.
Lemma 8. Let k ≥ 2, then:

1. IdL(Nε
k) = 〈xε21 − xε1, xε1xε2, [x1, x2]ε − [x1, x2], [x1, . . . , xk]〉TL ;

2. cLn(Nε
k) = 1 +

∑k−1
j=1

(
n
j

)
j ≈ qnk−1, for some q > 0.

Proof. Let Q = 〈xε21 − xε1, xε1xε2, [x1, x2]ε − [x1, x2], [x1, . . . , xk]〉TL . It is easily proved that Q ⊆ IdL(Nε
k).

Let now f be an L-identity of Nε
k . We may assume that f is multilinear and since Nε

k is an unitary algebra,
we may take f proper.

After reducing f modulo Q, we get that f is the zero polynomial if deg f ≥ k and it is a linear combination
of commutators

[xε1, x2, . . . , xn] [xi, x1, . . . , x̂i, . . . , xn]
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if deg f < k, where 2 ≤ i ≤ n and the symbol x̂i means that the variable xi is omitted.
Hence, modulo Q,

f = α[xε1, x2, . . . , xn] +

n∑
i=2

βi[xi, x1, . . . , x̂i, . . . , xn],

where n ≤ k − 1. We claim that such commutators are linearly independent modulo IdL(Nε
k), i.e. f is the

zero polynomial modulo IdL(Nε
k) and this will imply that Q = IdL(Nε

k), as required.
Suppose that βi 6= 0 for some i, then we consider the evaluation xi = e12, xj = E for all j 6= i and we get

βi = 0, a contradiction. Now, if α 6= 0, then we make the evaluation x1 = · · · = xn = E and we get α = 0, a
contradiction. This says that f ∈ Q and so Q = IdL(Nε

k) as claimed.
The arguments above also prove that

γLj (Nε
k) =

{
j, if j ≤ k − 1

0, if j ≥ k
.

Hence we also get that

cLn(Nε
k) = 1 +

k−1∑
j=1

(
n

j

)
γLj (Nε

k) = 1 +

k−1∑
j=1

(
n

j

)
j ≈ qnk−1,

for some q > 0. �

We want to highlight that the case k = 2 was already studied in [30, Theorem 1]. Moreover, it is clear

that if k = 1, then Nε
1 = F, IdL(Nε

1 ) = 〈[x1, x2], xε1〉TL and cLn(Nε
1 ) = 1 for all n ≥ 1.

4. On the structure of algebras generating L-subvarieties of varL(UT ε2 )

In this section we shall study the structure of L-algebras belonging to the L-variety generated by UT ε2 .
Notice that in what follows we may assume, without loss of generality, that L is a 1-dimensional Lie

algebra spanned by ε.
We start by proving that any L-algebra inside varL(UT ε2 ) satisfies the same L-identities of a finite dimen-

sional L-algebra.

Theorem 9. If A ∈ varL(UT ε2 ) is a finitely generated L-algebra over an algebraically closed field F of
characteristic zero, then A is TL-equivalent to a finite dimensional L-algebra over F .

Proof. If A ∈ varL(UT ε2 ), then by Theorem 2, xε
2−xε ∈ IdL(A). Hence U(L) acts on A as the 2-dimensional

semisimple Hopf algebra H with basis {1H , ε̄} where ε̄2 = ε̄. Thus A can be regarded as an algebra with

H-action and we may restrict the TL-ideal IdL(A) to the TH -ideal IdH(A). Thus the claim follows from [16,
Theorem 1.1]. �

We refer the reader to [13, 16] for an account on algebras with an Hopf algebra action and the related
theory of polynomial identities.

Now we recall the following result characterizing the nth L-cocharacter of UT ε2 .

Theorem 10 ([9], Theorem 12). If χLn(UT ε2 ) =
∑
λ`nmλχλ is the nth cocharacter of UT ε2 , then

mλ =


n+ 1, λ = (n)

2(q + 1), λ = (p+ q, p)

q + 1, λ = (p+ q, p, 1)

0, otherwise

,

where p, q ≥ 0.

In order to characterize the L-subvariety of varL(UT ε2 ) we are going to prove the following.

Theorem 11. If A ∈ varL(UT ε2 ), then A is TL-equivalent to a finitely generated L-algebra.
7



Proof. Let B be the relatively free algebra of varL(A) with 3 generators. We claim that IdL(A) = IdL(B).

Clearly IdL(A) ⊆ IdL(B), thus we shall prove the opposite inclusion.

Let f ∈ IdL(B) be a multilinear polynomial of degree n and let M be the Sn-module generated by f .
Without loss of generality, we may assume that M is irreducible. In fact, if M = M1 ⊕ · · · ⊕Mk is the
decomposition into irreducible components, where Mi is generated by fi as Sn-module, 1 ≤ i ≤ k, then
fi ∈ IdL(A) for all i implies that also f ∈ IdL(A).

Let χλ be the irreducible character of M , where λ = (λ1, . . . , λr) ` n, and let

eTλ =
∑

τ∈RTλ
σ∈CTλ

(sgnσ)τσ

be the corresponding essential idempotent (see for instance [12, Chapter 2]). Here recall that RTλ and CTλ
stand for the row-stabilizer and the column-stabilizer of the Young tableau Tλ, respectively.

If λ4 6= 0 or λ3 > 1, then by Theorem 10, it follows that f ∈ IdL(A). Thus we may assume that λ4 = 0
and λ3 ≤ 1.

Let now consider g =
(∑

τ∈RTλ
τ
)
f and notice that g is symmetric in at most two disjoint subsets X1,

X2 of differential variables. If we identify all the variables of X1 with x1 and all the variables of X2 with
x2 in g, we obtain the homogeneous polynomial p = p(x1, x2, x3) which is still an L-identity of B. But from

the definition of relatively free algebra, it follows that p ∈ IdL(A). By multilinearizing the polynomial p, we

get the polynomial λ1!λ2!g(x1, . . . xn). Hence g ∈ IdL(A) and, since M is irreducible and g 6= 0, it follows

that also f ∈ IdL(A). This completes the proof. �

As a consequence of Theorems 9 and 11 we have the following.

Corollary 12. If A ∈ varL(UT ε2 ) is an L-algebra over an algebraically closed field F of characteristic zero,
then varL(A) = varL(B) for some finite dimensional L-algebra B over F .

According to Corollary 12, from now on we will always assume, without loss of generality, that if V ⊆
varL(UT ε2 ), then V = varL(A) where A is a finite dimensional L-algebra.

Now we are going to describe the structure of such finite dimensional L-algebras belonging to varL(UT ε2 ).
First we recall some definitions. A subalgebra (ideal) B of A is an L-subalgebra (ideal) if it is a subalgebra

(ideal) such that BL ⊆ B, where BL denotes the set of all h(b), for all b ∈ B and h ∈ U(L).
Let A be a finite dimensional L-algebras over an algebraically closed field. By the Wedderburn-Malcev

Theorem for associative algebras, we can write

(2) A = B + J

where B is a maximal semisimple unitary subalgebra of A and J = J(A) is its Jacobson radical. Notice
that although J is an L-invariant ideal of A (see [15]), it may does not exist an L-invariant Wedderburn-
Malcev decomposition, i.e., it may happen that all semisimple subalgebras B of A that satisfy (2) are not
L-subalgebras of A. For example, the algebra UT δ2 of 2 × 2 upper triangular matrices where L acts as the
1-dimensional Lie algebra spanned by the inner derivation δ induced by e12 has no L-invariant Wedderburn-
Malcev decomposition (see [31, Example 2]). Things are different inside varL(UT ε2 ), in fact at the end of the
section, we will prove that, up to TL-equivalence, we can always assume that a subvariety of varL(UT ε2 ) is
generated by an L-algebra with an L-invariant Wedderburn–Malcev decomposition.

To this end, first recall that J can be decompose into direct sum of B-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11

where for i, k ∈ {0, 1}, Jik is a left faithful module or a 0-left module according as i = 1 or i = 0, respectively.
Similarly, Jik is a right faithful module or a 0-right module according as k = 1 or k = 0, respectively.
Moreover, for i, k, l,m ∈ {0, 1}, JikJlm ⊆ δk,lJim where δk,l is the Kronecker delta and J11 = BN for some
nilpotent subalgebra N of A commuting with B. For a proof of this result see [11, Lemma 2].

Proposition 13. Let A = B + J be a finite dimensional L-algebra. If δ ∈ Der(A), then 1δB ∈ J01 + J10.
Moreover, Jδ00 ⊆ J00 + J01 + J10, J

δ
01 ⊆ J00 + J01 + J11, J

δ
10 ⊆ J00 + J10 + J11 and Jδ11 ⊆ J01 + J10 + J11.
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Proof. Since δ ∈ Der(A), by [15, Theorem 4.3] δ = adb + adj +δ′, where b ∈ B, j ∈ J and δ′ ∈ Der(A) is

such that Bδ
′

= 0. Thus since [J11, 1B ] = J001B = 1BJ00 = 0, we get 1δB = 1
adj
B ∈ J01 + J10.

Let j00 ∈ J00. Since 1BJ00 = 0, we get 0 = 1δBj00 + 1Bj
δ
00 and so it follows that 1Bj

δ
00 ∈ J10. On

the other hand, since J001B = 0, we have 0 = jδ001B + j001δB . Then jδ001B ∈ J01. Thus it follows that
Jδ00 ⊆ J00 + J01 + J10.

Let now j11 ∈ J11. Then jδ11 = (j111B)δ = jδ111B+j111δB ∈ J01+J10+J11. Thus we get Jδ11 ⊆ J01+J10+J11.
Similarly it can be proved for J01 and J10. �

In case of algebras belonging to varL(UT ε2 ), the action of L on J and its components can be assumed to
be much more simpler.

Lemma 14. If A = B + J ∈ varL(UT ε2 ) with J = J00 + J10 + J01 + J11, then jε = j for all j ∈ J01 ∪ J10.

Proof. If j ∈ J01 (resp. j ∈ J10), then j = [j, 1B ] (resp. j = [1B , j]). Thus the claim follows since

[x1, x2]ε − [x1, x2] ∈ IdL(A). �

Lemma 15. Let A = B + J ∈ varL(UT ε2 ). Then Jε00J01 = J10J
ε
00 = Jε11J10 = J01J

ε
11 = J01J10 = J10J01 =

J01[J11, J11] = [J11, J11]J10 = [J00, J00]J01 = J10[J00, J00] = 0.

Proof. Since [x1, x2]ε − [x1, x2] ≡ 0 and xε1x
ε
2 ≡ 0 on varL(UT ε2 ), the result immediately follows applying

Lemma 14. �

Theorem 16. If A = B + J ∈ varL(UT ε2 ) then, up to TL-equivalence, BL ⊆ B.

Proof. If J = 0 there is nothing to prove, so let J 6= 0 and since A ∈ varL(UT ε2 ) then B = F ⊕ · · · ⊕ F. By
Proposition 13 it readily follows that if either 1εB = 0 or J01 = J10 = 0, then Bε ⊆ B and we are done also
in this case.

So, let suppose 1εB = j 6= 0, where j ∈ J01 + J10, and let consider ε′ = ε − adj ∈ Der(A). Remark

that ε′ 6= 0 in fact if ε′ = 0, then ε = adj and 1ε
2

B = jε = 0, since J2
01 = J2

10 = 0 and, by Lemma 15,

J01J10 = J10J01 = 0. This is a contradiction since xε
2 − xε ∈ IdL(A).

Let now Aε′ be the L-algebra A where L acts on it as the 1-dimensional Lie algebra spanned by ε′. Clearly
1ε
′

B = 0, Bε
′ ⊆ B and a straightforward computation can also prove that Aε′ ∈ varL(UT ε2 ). We claim that

IdL(A) = IdL(Aε′) and this will complete the proof.

Let f ∈ IdL(A) be a multilinear polynomial of degree n. According to [9, Theorem 5] we can write f as

f = αx1 . . . xn +

n∑
k=1

βkxi1 . . . xin−1x
ε
k +

∑
P,t

γP,txp1 . . . xpm [xεt , xj1 , . . . , xjn−m−1 ] + g,

where g ∈ IdL(UT ε2 ) ⊆ IdL(A), i1 < · · · < in−1, p1 < · · · < pm and j1 < · · · < jn−m−1. Notice that if we
make the evaluation x1 = · · · = xn = 1B , we get α = 0. Thus

(3) f =

n∑
k=1

βkxi1 . . . xin−1
xεk +

∑
P,t

γP,txp1 . . . xpm [xεt , xj1 , . . . , xjn−m−1
] + g ∈ IdL(A).

In order to prove that f ∈ IdL(Aε′), we have to show that

f =

n∑
k=1

βkxi1 . . . xin−1
xε
′

k +
∑
P,t

γP,txp1 . . . xpm [xε
′

t , xj1 , . . . , xjn−m−1
] + g̃

vanishes under every evaluation of elements of A. Here g̃ stands for the polynomial g in which we substituted
every differential variable xε with xε

′
.

Since ε′ = ε− adj , it is enough to prove that
n∑
k=1

βkxi1 . . . xin−1x
adj
k +

∑
P,t

γP,txp1 . . . xpm [x
adj
t , xj1 , . . . , xjn−m−1 ] ∈ IdL(Aε′).

But by definition of inner derivation, the claim follows since [j, x]ε − [j, x] ∈ IdL(A) and (3) holds. Hence

f ∈ IdL(Aε′).

Similarly it can be proved that IdL(Aε′) ⊆ IdL(A). Thus A ∼TL Aε′ and the claim is proved. �
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As a consequence of Proposition 13, Lemma 14 and Theorem 16 we get the following.

Corollary 17. If A = B+J ∈ varL(UT ε2 ) with J = J00 +J10 +J01 +J11, then JLik ⊆ Jik, for all i, k ∈ {0, 1}.

According to the previous results, from now on we will assume that the Wedderburn–Malcev decomposition
and the Jacobson radical decomposition into bimodules of every considered L-algebra are L-invariant.

5. On minimal L-subvarieties in varL(UT ε2 )

In this section we shall prove that the L-algebras Aεk, (Aεk)∗ and Nε
k introduced in section 3 generate

minimal L-varieties of polynomial growth. We start with the definition of minimal L-variety.

Definition 1. An L-variety V is said to be minimal of polynomial growth if cLn(V) ≈ qnk, for some q > 0,
and for any proper L-subvariety U ( V, we have that cLn(U) ≈ q′nt with t < k.

Algebras generating minimal varieties will play an important role in the main result, since we shall prove
that any L-algebra inside varL(UT ε2 ) has the same differential identities of a direct sum of such kind of
algebra plus a nilpotent algebra, eventually.

Remark 18 ([25], Remark 2). Let A = F + J be an L-algebra with J = J00 + J10 + J01 + J11. If A satisfies
the identity [x1, . . . , xt] ≡ 0 for some t ≥ 2, then J01 = J10 = 0.

Proof. The proof immediately follows from the fact that J10 = [J10, F, . . . , F︸ ︷︷ ︸
t−1

] and J01 = [J01, F, . . . , F︸ ︷︷ ︸
t−1

]. �

Theorem 19. For all k ≥ 2, Nε
k generates a minimal L-variety of polynomial growth.

Proof. Let suppose that A ∈ varL(Nε
k) and cLn(A) ≈ qnk−1 for some q > 0. We shall prove that A ∼TL Nε

k

and this will complete the proof.
Since cLn(A) is polynomially bounded, by [31, Theorem 8] we may assume that

A = B1 ⊕ · · · ⊕Bm
where B1, . . . , Bm are finite dimensional L-algebras such that dimF

Bi
J(Bi)

≤ 1, for all 1 ≤ i ≤ m. This implies

that either Bi ∼= F + J(Bi) or Bi ∼= J(Bi) is a nilpotent algebra. Moreover, since

cLn(A) ≤ cLn(B1) + · · ·+ cLn(Bm),

then there exists Bi such that cLn(Bi) ≈ bnk−1, for some b > 0. Thus

varL(Nε
k) ⊇ varL(A) ⊇ varL(F + J(Bi)) ⊇ varL(F + J11(Bi))

and cLn(F + J(Bi)) ≈ bnk−1. Here remark that F + J11(Bi) is an L-subalgebra of F + J(Bi) since, according
to Theorem 16, in varL(UT ε2 ) we may assume F ε = 0 and Jεij ⊆ Jij for all i, j ∈ {0, 1}.

Moreover, by Remark 18, we get that J10(Bi) = J01(Bi) = 0 and so

F + J(Bi) =
(
F + J11(Bi)

)
⊕ J00(Bi),

as L-algebras, and cLn(F + J(Bi)) = cLn(F + J11(Bi)) for n large enough.
It turns out that, in order to prove A ∼TL Nε

k , it suffices to show that F + J11(Bi) ∼TL Nε
k . Hence we

assume, as we may, that A is a unitary L-algebra and we shall look at its proper codimension and cocharacter
sequences.

Since cLn(A) ≈ qnk−1, then

cLn(A) =

k−1∑
i=0

(
n

i

)
γLi (A)

and by Corollary 5, γLi (A) 6= 0 for all 0 ≤ i ≤ k − 1 and γLi (A) = 0 for all i ≥ k.
Moreover, recall that since IdL(Nε

k) ⊆ IdL(A), then
ΓLi

ΓLi ∩Id
L

(A)
is isomorphic to a quotient module of

ΓLi

ΓLi ∩Id
L

(Nεk)
. Thus if ψLi (A) =

∑
λ`imλχλ and ψLi (Nε

k) =
∑
λ`im

′
λχλ are the i-th proper L-cocharacters of

A and Nε
k , respectively, then mλ ≤ m′λ for all λ ` i.

10



From now on, suppose k ≥ 3. For all 3 ≤ i ≤ k − 1, let f1 = [x1, x2, . . . , x2︸ ︷︷ ︸
i−1

] and f2 = [xε1, x1, . . . , x1︸ ︷︷ ︸
i−1

] be

the highest weight vectors corresponding to the partitions λ1 = (i − 1, 1) and λ2 = (i), respectively. It is
clear that f1 and f2 are not differential identities of Nε

k , thus χ(i−1,1) and χ(i) participate in the i-th proper
L-cocharacter of Nε

k with a non-zero multiplicities.
Moreover, since γLi (Nε

k) = i = degχ(i−1,1) + degχ(i), for all 2 ≤ i ≤ k − 1, we get that

ψLi (Nε
k) = χ(i−1,1) + χ(i).

Now, since γLk−1(A) 6= 0 then either ψLk−1(A) = χ(k−1) or ψLk−1(A) = χ(k−2,1) or ψLk−1(A) = χ(k−1) +χ(k−2,1).

Fist suppose that ψLk−1(A) = χ(k−1). Then [x1, x2, . . . , x2︸ ︷︷ ︸
k−2

] ≡ 0 onA and this trivially implies [xε1, x1, . . . , x1︸ ︷︷ ︸
k−2

] ≡

0 on A. Thus ψLk−1(A) = 0 and γLk−1(A) = 0, a contradiction.

Now suppose ψLk−1(A) = χ(k−2,1), then [xε1, x1, . . . , x1︸ ︷︷ ︸
k−2

] ≡ 0 on A. Let substitute the variable x1 with x1+x2

and let consider the multihomogeneous component with degree k − 2 in x1 and 1 in x2. As a consequence,
we get the following identity modulo IdL(UT ε2 ) :

(4) [xε2, x1, . . . , x1︸ ︷︷ ︸
k−2

] + (k − 2)[xε1, x2, x1, . . . , x1︸ ︷︷ ︸
k−3

] ≡ 0.

Since [x1, x2]− [xε1, x2]− [x1, x
ε
2] ∈ IdL(UT ε2 ) ⊆ IdL(A), we get

[x2, x
ε
1, x1, . . . , x1︸ ︷︷ ︸

k−3

] ≡ [x2, x1, . . . , x1︸ ︷︷ ︸
k−2

]− [xε2, x1, . . . , x1︸ ︷︷ ︸
k−2

].

By putting together the latter one with (4) we get the identity

(5) (k − 2)[x2, x1, . . . , x1︸ ︷︷ ︸
k−2

] ≡ (k − 1)[xε2, x1, . . . , x1︸ ︷︷ ︸
k−2

].

Moreover, by substituting the variable x2 with xε2 in (4) and recalling that xε
2

2 ≡ xε2, we also obtain
[xε2, x1, . . . , x1︸ ︷︷ ︸

k−2

] ≡ 0. From this one plus identity (5), we finally get the identity [x2, x1, . . . , x1︸ ︷︷ ︸
k−2

] ≡ 0, thus

ψLk−1(A) = 0 and γLk−1(A) = 0, a contradiction. Hence it must be ψLk−1(A) = χ(k−1) + χ(k−2,1).

Now, for all 2 ≤ i ≤ k − 2, as before either ψLi (A) = χ(i) or ψLi (A) = χ(i−1,1) or ψLi (A) = χ(i) + χ(i−1,1).

If ψLi (A) = χ(i) then [x1, x2, . . . , x2︸ ︷︷ ︸
i−1

] ≡ 0 on A. Thus also [x1, x2, . . . , x2︸ ︷︷ ︸
k−2

] ≡ 0 that is absurd for the first

part of the proof. Analogously, if ψLi (A) = χ(i−1,1) then [xε1, x1, . . . , x1︸ ︷︷ ︸
i−1

] ≡ 0 on A and so [xε1, x1, . . . , x1︸ ︷︷ ︸
k−2

] ≡ 0,

a contradiction.
Thus ψLi (A) = χ(i) + χ(i−1,1) = ψLi (Nε

k), for all 1 ≤ i ≤ k − 1 and

cLn(A) =

k−1∑
i=0

(
n

i

)
γLi (A) = 1 +

k−1∑
i=1

(
n

i

)
i = cLn(Nε

k).

Hence A and Nε
k have the same codimension sequence and, since IdL(Nε

k) ⊆ IdL(A), we get the equality

IdL(Nε
k) = IdL(A), as required.

Notice that if k = 2, then ψ2(Nε
2 ) = χ(1,1) + χ(2) and with similar arguments as in the first part of the

proof we get ψ2(A) = ψ2(Nε
2 ), cLn(A) = cLn(Nε

2 ) and so A ∼TL Nε
2 . �

We now recall a result about the Jacobson radical of an algebra belonging to varL(Aεk) that will be very
useful hereafter.

Lemma 20. Let A = F + J ∈ varL(Aεk) (resp. A = F + J ∈ varL((Aεk)∗)). Then Jε11 = 0 and J01 =
[J11, J11] = 0 (resp. J10 = [J11, J11] = 0).
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Proof. We will prove the statement in case A ∈ varL(Aεk). The other one will follow analogously.

Recall that according to Corollary 17, Jε11 ⊆ J11. Moreover, since xε1x2 · · ·xk ∈ IdL(Aεk) ⊆ IdL(A), for all

j ∈ J11 we get jε 1F · · · 1F︸ ︷︷ ︸
k−1

= 0. Thus, if we let jε = j̃ ∈ J11 then

0 = j̃ 1F · · · 1F︸ ︷︷ ︸
k−1

= j̃,

since 1F acts as a unit element on J11. Now, due to the identity [x1, x2]ε − [x1, x2] ≡ 0, we get also
[J11, J11] = 0.

Finally, by Lemma 14, for all a ∈ J01, a
ε = a. Thus by using the same argument as before, we get that

J01 = Jε01 = 0. �

Lemma 21. Let A = F + J ∈ varL(Aεk) (resp. A = F + J ∈ varL((Aεk)∗)). If cLn(A) ≈ qnk−1, for some
q > 0, then A ∼TL Aεk (resp. A ∼TL (Aεk)∗).

Proof. We prove the statement for A = F + J ∈ varL(Aεk). The case A = F + J ∈ varL((Aεk)∗) will follow
with similar arguments.

By the previous Lemma, J01 = [J11, J11] = 0, so we may assume A = F + J00 + J10 + J11 and J11

commutative. Moreover Jε11 = 0.

First suppose that J10J
k−2
00 = 0.

If Jm = 0, then for all n ≥ m we shall prove that g = xk · · ·xnxε1x2 · · ·xk−1 ∈ IdL(A). Since such a
monomial is multilinear, we can evaluate each variable in a basis of A consisting in an union of a basis of
J00, J10, J11 and 1F . Since n ≥ m and Jm = 0, if we evaluate all the variables in J then we get zero, thus
at least one variable must be evaluated in 1F .

Let focus our attention to the variable x1. It is clear that if x1 is evaluated in 1F or on J11, then g vanishes
since F ε = Jε11 = 0. If we evaluate x1 in an element j10 ∈ J10, then jε10 = j10 and we are forced to evaluate

x2, . . . , xk−1 on elements of J00. Since J10J
k−2
00 = 0, we get zero. Finally, let evaluate x1 on an element

j00 ∈ J00. Then jε00 ∈ J00 and since there exists t such that xt is evaluated in 1F , also in this case we get
zero.

Therefore we have proved that xk · · ·xnxε1x2 · · ·xk−1 ∈ IdL(A). From this identity and from [x1, x2]ε −
[x1, x2] ≡ 0 follows also that xk+1 · · ·xn[x1, x2]x3 · · ·xk ∈ IdL(A).

Since A ∈ varL(Aεk), if f ∈ PLn with deg f = n ≥ m, then after reducing f modulo the TL-ideal generated
by the differential identities of Aεk and by g, by using also Lemma 7, we have that f is a linear combination
of the L-polynomials

x1 · · ·xn, xi1 · · ·xit [xi, xj ]xj1 · · ·xjl ,
x2 · · ·xnxε1, xp1 · · ·xprxεmxq1 · · ·xqs ,

where t+ l = n−2, r+ s = n−1, l < k−2, s < k−2, i > j < i1 < . . . < it, j1 < . . . < jl, m < p1 < . . . < pr
and q1 < . . . < qs. Remark that l, s < k − 2 since g ≡ 0 on A.

Therefore

cLn(A) ≤ 2 + n+

k−3∑
l=0

(
n

l

)
(n− l + 1) +

k−3∑
l=1

n−l+1∑
j=2

(
n− j
l − 1

)
(j − 1) ≈ q′nk−2,

for some q′ > 0. This is a contradiction, since we are assuming that cLn(A) ≈ qnk−1.

Thus J10J
k−2
00 6= 0 and there exist a ∈ J10 and b1, . . . , bk−2 ∈ J00 such that ab1 · · · bk−2 6= 0. Let f ∈ IdL(A)

be a multilinear L-polynomial of degree n. By Lemma 7, f modulo IdL(Aεk) can be written as

f = αx1 · · ·xn + βx2 · · ·xnxε1 +
∑
l<k−1

∑
I,J

αI,Jxi1 · · ·xit [xi, xj ]xj1 · · ·xjl+∑
s<k−1

∑
P,Q

βP,Qxp1 · · ·xprxεmxq1 · · ·xqs + f ′,
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where f ′ ∈ IdL(Aεk), I = {i, j, i1, . . . , it}, J = {j1, . . . , jl}, P = {m, p1, . . . , pr} and Q = {q1, . . . , qs} with
t+ l = n− 2, r + s = n− 1, l < k − 1, s < k − 1, i > j < i1 < . . . < it, j1 < . . . < jl, m < p1 < . . . < pr and
q1 < . . . < qs.

By choosing x1 = · · · = xn = 1F we get α = 0. Moreover, by induction on l, for fixed I and J, the
evaluation xi = a, xj = xi1 = · · · = xit = 1F and xjh = bh, for all 1 ≤ h ≤ l, gives αI,J = 0. If we let x1 = a
and x2 = · · · = xn = 1F , then we get β = 0. Finally, by induction on s, for fixed P and Q, the evaluation
xm = a, xp1 = · · · = xpr = 1F and xqh = bh, for all 1 ≤ h ≤ s, gives βP,Q = 0.

Thus f = f ′ ∈ IdL(Aεk) and IdL(Aεk) = IdL(A), as claimed. �

We are now in a position to prove that Aεk and (Aεk)∗ generate minimal L-varieties.

Theorem 22. For all k ≥ 2, Aεk and (Aεk)∗ generate minimal L-varieties of polynomial growth.

Proof. Let A ∈ varL(Aεk) such that cLn(A) ≈ qnk−1, for some q > 0. By [31, Theorem 8] we assume

A = B1 ⊕ · · · ⊕Bm
where B1, . . . , Bm are finite dimensional L-algebras such that dimF

Bi
J(Bi)

≤ 1. This says that either Bi ∼=
F + J(Bi) or Bi ∼= J(Bi) is a nilpotent L-algebra, for all 1 ≤ i ≤ m. Since

cLn(A) ≤ cLn(B1) + · · ·+ cLn(Bm),

there exists Bi such that cLn(Bi) ≈ bnk−1, for some b > 0. Thus Bi = F +J(Bi) and by the previous Lemma,
Bi ∼TL Aεk. Hence

varL(Aεk) = varL(Bi) ⊆ varL(A) ⊆ varL(Aεk)

and so varL(A) = varL(Aεk).
Similarly one can prove the statement for (Aεk)∗. �

6. Classifying subvarieties of varL(UT ε2 )

In this section we present the main result about the L-variety generated by UT ε2 , i.e., we will classify up
to TL-equivalence all the L-algebras generating L-subvarieties of varL(UT ε2 ).

To this end, we start with the following lemma concerning algebras with slow codimension growth.

Lemma 23. Let A = F + J10 + J11 ∈ varL(UT ε2 ) with J10 6= 0 (resp. A = F + J01 + J11 ∈ varL(UT ε2 ) with
J01 6= 0). If Jε11 = 0, then A ∼TL Aε2 (resp. A ∼TL (Aε2)∗).

Proof. Since F ε = Jε11 = 0 and J2
10 = 0, it is clear that x1x

ε
2 − x2x

ε
1 − [x1, x2] ∈ IdL(A), thus IdL(Aε2) ⊆

IdL(A).

In order to prove the opposite inclusion, let f ∈ IdL(A) be a multilinear L-polynomial of degree n. By
[30, Theorem 3], f can be written as

f =

n∑
j=1

αjxi1 · · ·xin−1
xj + βx2 · · ·xnxε1 + g,

where g ∈ IdL(Aε2) and i1 < · · · < in−1.
Suppose that there exists j 6= 1 such that αj 6= 0. Then by making the evaluation xj = b ∈ J10, for some

b 6= 0, and xi1 = · · · = xin−1
= 1F , we get αj = 0, a contradiction. Now, if α1 6= 0, then by making the

evaluation x1 = · · · = xn = 1F we get α1 = 0, a contradiction. Finally, if β 6= 0, then we let x1 = b and
x2 = · · · = xn = 1F getting β = 0, a contradiction.

Hence f = g ∈ IdL(Aε2) and so A ∼TL Aε2.
Similarly, if A = F + J01 + J11, we get A ∼TL (Aε2)∗. �

Lemma 24. Let A = F + J11 ∈ varL(UT ε2 ). Then A ∼TL Nε
k , for some k ≥ 1.

Proof. Since A ∈ varL(UT ε2 ), then cLn(A) ≈ qnk−1 for some q > 0 and k ≥ 1.

If Jε11 = 0, then xε ≡ 0 on A and so [x1, x2] ∈ IdL(A). This trivially implies that A is a commutative
algebra with trivial derivation, i.e., A ∼TL Nε

1 = F.
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Let now Jε11 6= 0. Since A is a unitary algebra, we can consider the proper L-codimension sequence and
write

cLn(A) =

k−1∑
i=0

(
n

i

)
γLi (A),

with γLi (A) = 0 for all i ≥ k. In particular γLk (A) = 0 and so [x1, . . . , xk] ∈ IdL(A). Hence IdL(Nε
k) ⊆ IdL(A)

and by Theorem 19, since cLn(A) ≈ qnk−1, it follows A ∼TL Nε
k . �

We now prove some auxiliary lemmas very useful in the proof of the main theorem. We start by the
following that allows us to reduce our problem to the study of a variety generated by an L-algebra with
either J01 = 0 or J10 = 0.

Lemma 25. Let A = F + J ∈ varL(UT ε2 ). Then A ∼TL (F + J00 + J10 + J11)⊕ (F + J00 + J01 + J11).

Proof. Let B1 = F+J00+J10+J11 and B2 = F+J00+J01+J11. Since F ε = 0 and Jεij ⊆ Jij for all i, j ∈ {0, 1},
it is clear that B1 and B2 are L-subalgebras of A. Then IdL(A) ⊆ IdL(B1 ⊕B2) = IdL(B1) ∩ IdL(B2).

Moreover, since J01J10 = J10J01 = 0, it turns out that also IdL(B1 ⊕ B2) ⊆ IdL(A) holds. Thus
A ∼TL B1 ⊕B2 as claimed. �

Lemma 26. Let A = F+J00+J10+J11 ∈ varL(UT ε2 ) with J10 6= 0 (resp. A = F+J00+J01+J11 ∈ varL(UT ε2 )
with J01 6= 0).

1. If Jε11 = 0, then A ∼TL Aεk ⊕ N (resp. A ∼TL (Aεk)∗ ⊕ N), for some k ≥ 2 where N is a nilpotent
L-algebra.

2. If Jε11 6= 0, then A ∼TL Aεk ⊕ Nε
u ⊕ N (resp. A ∼TL (Aεk)∗ ⊕ Nε

u ⊕ N), for some u ≥ 2 and k ≥ 2
where N is a nilpotent L-algebra.

Proof. Let A = F + J00 + J10 + J11 ∈ varL(UT ε2 ) with J10 6= 0. The other case will follow with similar
arguments.

Suppose first Jε11 = 0 and let t ≥ 0 be the greatest integer such that J10J
t
00 6= 0. Notice that if t = 0 then

J10J00 = 0 and A = (F + J10 + J11)⊕ J00 as L-algebras. By Lemma 23 we get F + J10 + J11 ∼TL Aε2, hence
A ∼TL Aε2 ⊕ J00, where J00 is a nilpotent L-algebra.

So let assume t > 0, i.e., J10J
t
00 6= 0 (that is in particular J10J00 6= 0) and J10J

t+1
00 = 0.

Suppose that Jε00J
t+1
00 = 0. Then it is easy to check that xε1x2 · · ·xt+2 ∈ IdL(A), thus IdL(Aεt+2) ⊆ IdL(A).

Furthermore, since J10J
t
00 6= 0, there exist a ∈ J10 and b1, . . . , bt ∈ J00 such that ab1 · · · bt 6= 0. Therefore, as

in the proof of Lemma 21, one can prove that A ∼TL Aεt+2.

Let suppose now Jε00J
t+1
00 6= 0. Remark that, since Jε00 ⊆ J00, ε

2 = ε and Lemma 15 holds, Jε00 is an L-ideal

of A, thus we can consider Ā = A/Jε00. As before, since J10J
t+1
00 = 0, it follows that xε1x2 · · ·xt+2 ∈ IdL(Ā),

IdL(Aεt+2) ⊆ IdL(Ā) and so Ā ∼TL Aεt+2.

Notice that IdL(A) ⊆ IdL(Ā) = IdL(Aεt+2) and, since J00 is an L-subalgebra of A, IdL(A) ⊆ IdL(J00).

Therefore IdL(A) ⊆ IdL(Aεt+2 ⊕ J00).

Conversely, let f ∈ IdL(Aεt+2 ⊕ J00) be a multilinear L-polynomial of degree n. We can write f as

(6)

f = αx1 · · ·xn+βx2 · · ·xnxε1+
∑
l<t+1

∑
I,J

αI,Jxi1 · · ·xik [xi, xj ]xj1 · · ·xjl+
∑
s<t+1

∑
P,Q

βP,Qxp1 · · ·xprxεmxq1 · · ·xqs∑
l′>t

∑
I′,J′

αI′,J′xi′1 · · ·xi′k [xi′ , xj′ ]xj′1 · · ·xj′l +
∑
s′>t

∑
P ′,Q′

βP ′,Q′xp′1 · · ·xp′rx
ε
m′xq′1 · · ·xq′s + g,

where g ∈ IdL(UT ε2 ) ⊆ IdL(A) and the indices of the variables are subjected to the conditions as in Lemma
7.

Remark that g and the last two summand of f are L-identities of Aεt+2. Moreover, in Lemma 7 it was also

proved that the first four summand of f are linearly independent modulo IdL(Aεt+2), hence α = β = αI,J =
14



βP,Q = 0 for all I, J, P and Q, and

(7) f =
∑
l′>t

∑
I′,J′

αI′,J′xi′1 · · ·xi′k [xi′ , xj′ ]xj′1 · · ·xj′l +
∑
s′>t

∑
P ′,Q′

βP ′,Q′xp′1 · · ·xp′rx
ε
m′xq′1 · · ·xq′s + g.

Since f ∈ IdL(J00), if we evaluate all the variables on J00, we get zero. Now, since J10J
t+1
00 = Jε11 =

[J11, J11] = 0, every evaluation of f into elements of A gives the zero value, hence f ∈ IdL(A). So IdL(Aεt+2⊕
J00) ⊆ IdL(A) and A ∼TL Aεt+2 ⊕ J00 follows.

Suppose now Jε11 6= 0.
Let B = F + J00 + J10 and D = F + J11. It is clear that B and D are L-subalgebras of A. Moreover, for

the first part of the proof, B ∼TL Aεt+2 ⊕N, for some t ≥ 0, and by Lemma 24, D ∼TL Nε
u for some u ≥ 2.

Thus IdL(A) ⊆ IdL(B ⊕D) = IdL(Aεt+2 ⊕Nε
u ⊕N).

Conversely, let f ∈ IdL(Aεt+2 ⊕ Nε
u ⊕ N) be a multilinear polynomial of degree n and write f as in (6).

As in the previous case, since f ∈ IdL(Aεt+2), we can reduce f as in (7). Notice that f ∈ IdL(B) ∩ IdL(D),

thus any evaluation of f in B or in D gives zero. Furthermore, since J10J
t+1
00 = Jε11J10 = 0, we get that f

vanishes under any evaluation on elements of A.
Thus f ∈ IdL(A) and IdL(A) = IdL(B ⊕ D) = IdL(Aεt+2 ⊕ Nε

u ⊕ N). This immediately implies A ∼TL
Aεt+2 ⊕Nε

u ⊕N and we are done. �

By putting together the previous results, we get the following.

Lemma 27. Let A = F + J ∈ varL(UT ε2 ) with J10 6= 0 and J01 6= 0. Then either A ∼TL Aεk ⊕ (Aεr)
∗ ⊕N or

A ∼TL Aεk ⊕ (Aεr)
∗ ⊕Nε

u ⊕N, for some k, r, u ≥ 2, where N is a nilpotent L-algebra.

Proof. By Lemma 25, A ∼TL B1 ⊕ B2 where B1 = F + J00 + J10 + J11 and B2 = F + J00 + J01 + J11.
Moreover, by the previous Lemma, B1 ∼TL Aεk ⊕ N or B1 ∼TL Aεk ⊕ Nε

u ⊕ N and B2 ∼TL (Aεr)
∗ ⊕ N or

B2 ∼TL (Aεr)
∗ ⊕Nε

u ⊕N, for some k, r, u ≥ 2 and N a nilpotent L-algebra. It readily follows that

A ∼TL Aεk ⊕ (Aεr)
∗ ⊕N or

A ∼TL Aεk ⊕ (Aεr)
∗ ⊕Nε

u ⊕N,

as claimed. �

We are now in a position to prove the main theorem of the paper.

Theorem 28. If A ∈ varL(UT ε2 ) then A is TL-equivalent to one of the following L-algebras: UT ε2 , N,
Nε
t ⊕N, Aεk ⊕N, (Aεr)

∗ ⊕N, Aεk ⊕Nε
u ⊕N, (Aεr)

∗ ⊕Nε
u ⊕N, Aεk ⊕ (Aεr)

∗ ⊕N, Aεk ⊕ (Aεr)
∗ ⊕Nε

u ⊕N, where
N is a nilpotent algebra and k, r, u ≥ 2, t ≥ 1.

Proof. If A ∼TL UT ε2 there is nothing to prove, so let suppose that A generates a proper L-subvariety of
varL(UT ε2 ). Thus, by Theorem 3, cLn(A) is polynomially bounded and by [31, Theorem 8] we may assume

A = B1 ⊕ · · · ⊕Bm,

where B1, . . . , Bm are finite dimensional L-subalgebras of A such that dimF
Bi

J(Bi)
≤ 1, for all 1 ≤ i ≤ m.

If for all i, dimF
Bi

J(Bi)
= 0, then Bi = J(Bi) is a nilpotent L-algebra and A ∼TL N where N =

B1 ⊕ · · · ⊕Bm.
Thus suppose that there exists i such that dimF

Bi
J(Bi)

= 1, that is Bi = F + J(Bi). Write J(Bi) =

J00 ⊕ J10 ⊕ J01 ⊕ J11.
If J10 = J01 = 0, then by Lemma 24, A ∼TL Nε

ui⊕N for some ui ≥ 1, where N is a nilpotent L-algebra. If
either J10 6= 0 or J01 6= 0, then by Lemmas 26 and 27, Bi is TL-equivalent to one of the following L-algebras:
Aεki ⊕N, (Aεri)

∗ ⊕N, Aεki ⊕N
ε
ui ⊕N, (Aεri)

∗ ⊕Nε
ui ⊕N, A

ε
ki
⊕ (Aεri)

∗ ⊕N or Aεki ⊕ (Aεri)
∗ ⊕Nε

ui ⊕N, for
some ki, ri, ui ≥ 2.

Since A = B1⊕· · ·⊕Bm, by taking into account the previous possibilities, we get the desired conclusion. �

As a direct consequence of the previous Theorem and Lemmas 19 and 22, we get the following corollary
that classifies, up to TL-equivalence, all L-algebras generating minimal varieties of polynomial growth inside
varL(UT ε2 ).

15



Corollary 29. Let A ∈ varL(UT ε2 ). Then A generates a minimal L-variety if and only if either A ∼TL Nε
u

or A ∼TL Aεk or A ∼TL (Aεk)∗, for some u ≥ 1, k ≥ 2.

7. Classifying subvarieties of varL(UT2)

In this section we classify, up to TL-equivalence, all the L-subvarieties of varL(UT2). As we remarked
before, since L acts trivially on UT2, this is equivalent to the classification of the algebras inside the variety
generated by UT2 in the ordinary case given in [22]. In what follows we present such results in the language
of L-algebras for convenience of the reader.

For k ≥ 2, let Ak, A
∗
k and Nk be the algebras Aεk, (Aεk)∗ and Nε

k constructed in Section 3, respectively,
where L acts trivially on them.

Since xδ ≡ 0 for all δ ∈ L, in this case we are dealing with ordinary identities. Thus we have the following
results characterizing the L-identities and the growth of the L-codimensions of the above algebras.

Theorem 30 ([4], Lemma 3).

1. IdL(A2) = 〈[x1, x2]x3〉TL and IdL(A∗2) = 〈x1[x2, x3]〉TL .
2. cLn(A2) = cLn(A∗2) = n.

Theorem 31 ([22], Lemma 3.1). Let k ≥ 3, then:

1. IdL(Ak) = 〈[x1, x2][x3, x4], [x1, x2]x3 · · ·xk+1〉TL ;

2. cLn(Ak) =

k−2∑
l=0

(
n

l

)
(n− l − 1) + 1 ≈ qnk−1, for some q > 0.

Hence IdL(A∗k) = 〈[x1, x2][x3, x4], x1 · · ·xk−2[xk−1, xk]〉TL and cLn(A∗k) = cLn(Ak) ≈ qnk−1.

Theorem 32 ([5], Theorem 3.4,). Let k ≥ 3, then:

1. IdL(Nk) = 〈[x1, x2][x3, x4], [x1, . . . , xk]〉TL ;

2. cLn(Nk) = 1 +
∑k−1
j=2

(
n
j

)
(j − 1) ≈ qnk−1, for some q > 0.

Moreover, N2 ∼TL F.

The following result classifies the subvarieties of varL(UT2).

Theorem 33 ([22], Theorem 5.4). If A ∈ varL(UT2) then A is TL-equivalent to one of the following L-
algebras: UT2, N, Nu ⊕N, Ak ⊕N, A∗r ⊕N, Ak ⊕Nu ⊕N, A∗r ⊕Nu ⊕N, Ak ⊕A∗r ⊕N, Ak ⊕A∗r ⊕Nu ⊕N,
where N is a nilpotent algebra and k, r, u ≥ 2.

As a consequence of the previous theorems, we can also get the classification of all L-algebras generating
minimal varieties.

Corollary 34. An L-algebra A ∈ varL(UT2) generates a minimal variety of polynomial growth if and only
if either A ∼TL Nu or A ∼TL Ak or A ∼TL A∗k, for some u ≥ 2, k ≥ 2.
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