DIFFERENTIAL IDENTITIES AND VARIETIES OF ALMOST POLYNOMIAL
GROWTH

FABRIZIO MARTINO AND CARLA RIZZO

ABSTRACT. Let V be an L-variety of associative L-algebras, i.e., algebras where a Lie algebra L acts on
them by derivations, and let c,I; (V), n > 1, be its L-codimension sequence. If V is generated by a finite
dimensional L-algebra, then such a sequence is polynomially bounded if and only if V does not contain
UTs, the 2 x 2 upper triangular matrix algebra with trivial L-action, and UT5 where L acts on UT: as the
1-dimensional Lie algebra spanned by the inner derivation £ induced by ej1. In this paper we completely
classify all the L-subvarieties of var®(UT5) and var® (UT%) by giving a complete list of finite dimensional
L-algebras generating them.

1. INTRODUCTION

Let F be a field of characteristic zero, let F'(X) be the free associative algebra on a countable set X
of variables over F' and let A be an associative F-algebra. A polynomial of F(X) vanishing under every
evaluation in A is called a polynomial identity of A and we denote by Id(A) the T-ideal of polynomial
identities satisfied by A. One of the most challenging problem in the theory of algebras with polynomial
identities (PI theory) is to find some numerical invariants allowing us to classify such T-ideals of F(X).
Since there is a one-to-one correspondence between T-ideals and varieties of algebras, often it is convenient
to translate a given issue about T-ideals into the language of varieties of algebras.

If P, is the space of multilinear polynomials in the variables x1, ..., x,, then we set
P,
n A _ d. n ,
enl4) = dimr 5737

for all n > 1, and we call it the codimension sequence of A. If V is a variety of algebras and Id(V) is its
corresponding T-ideal, then we can similarly define ¢, (V). Moreover, if V = var(A) is the variety generated
by the algebra A, then we refer to the codimension sequence of V as the one of A. Such a numerical sequence
was introduced by Regev in [28] and it measures the rate of growth of the multilinear polynomials lying in the
corresponding T-ideal. In the same paper, Regev also showed that if A is an associative algebra satisfying a
non-trivial polynomial identity, then ¢, (A) is exponentially bounded. Later on, Kemer in [18] and [19] proved
several properties about the codimension sequence. On one hand, he showed that ¢,(A) is polynomially
bounded or grows exponentially, on the other he gave a characterization of the varieties of polynomial
growth of the codimension proving that c,(A) is polynomially bounded if and only if G,UTy ¢ var(A),
where G is the infinite dimensional Grassmann algebra and UT5 is the algebra of 2 x 2 upper triangular
matrices. Hence var(G) and var(UT3) are the only varieties of almost polynomial growth, i.e., they grow
exponentially but any proper subvariety grows polynomially.

Varieties of poylnomial growth were extensively studied in the past years in various settings. We refer
the interested reader to [5], [6], [22] for some results about ordinary algebras; to [8], [23], [24], [32] for
superalgebras and more generally group graded algebras; to [3], [7], [10], [20], [21], [25] for algebras with
involution, graded involution, superinvolution and pseudoinvolution; to [27] for special Jordan algebras.

In this paper we deal with associative algebras with a Lie algebra action by derivations. If L is such a Lie
algebra, then its action can be naturally extended to the action of the universal enveloping algebra U(L) of
L and in this case we say that the algebra A is an algebra with derivations or an L-algebra. In this context it
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is natural to define the differential identities of 4, i.e. the polynomials in the variables 2" = h(z), h € U(L),
vanishing on A. In analogy with the ordinary case, one defines the sequence of L-codimensions and studies
their asymptotic behaviour. In [13] it was proved that, in case of finite dimensional L-algebras, the sequence
of L-codimensions is exponentially bounded or grows polynomially. Moreover, in [9] the authors studied the
algebra UTs of 2 x 2 upper triangular matrices with the action of the 1-dimensional Lie algebra spanned by
the inner derivation € induced by ej;. In that paper, they show that such algebra generates an L-variety of
almost polynomial growth. Finally, in [31] it was proved that the L-codimension sequence of an L-variety
V generated by a finite dimensional L-algebra is polynomially bounded if and only if UT, UT5 ¢ V, where
UT5 stands for the algebra of 2 x 2 upper triangular matrices and L acts trivially on it.

The main purpose of this paper is to classify, up to PI-equivalence, all the L-subvarieties of var®(UTy) and
var® (UT$) in terms of generators of the corresponding Tz -ideals and to provide a complete list of L-algebras
generating such L-subvarieties. Concerning var”(UT¥), the main result is given by Theorem 28 below. We
also highlight that if L acts trivially on UT5, then such a classification coincides to the one of the ordinary
case given in [22]. We chose to include it here for sake of completeness.

2. ON DIFFERENTIAL IDENTITIES

Throughout this paper F' will denote a field of characteristic zero and L a Lie algebra over F'.

Recall that a derivation of an associative algebra A is a linear map & : A — A such that (ab)’ = a’b+ab?,
for all a,b € A. In particular, an inner derivation induced by a € A is the derivation ad, acting on the left
on A by b*de = [a,b] = ab — ba, for all b € A. Clearly, the set Der(A) of all derivations of A is a Lie algebra.

Let U(L) be the universal enveloping algebra of L. By the Poincaré-Birkhoff-Witt Theorem, if L has a
ordered basis {0; | i € I}, then U(L) has a basis {d;, ---0;, | i1 < - < ip, i € I, p > 0}. Thus if A is
an associative F-algebra with an L-action by derivations, then this action can be naturally extended to an
U(L)-action. In this case we call A algebra with derivations or L-algebra.

Let X = {x1,x2,...} be a countable set and B = {d; | j > 0} be a basis of U(L). We denote by F(X|L)

the free associative algebra over F with free formal generators a:?j , 4> 0 and j > 0, where we identify
x; =}, 1 =dy € U(L). Notice that U(L) acts on F(X|L) by setting
djy . djp 6dj.,

djy .y djn\é _ 0djy djp djn, iy Odj, djn
(x,rx v, ) =y M R ERERI S A M A

ia .Tln

i1 iy oL,

11 12

where § € L and x?flx?;"‘ e xf;” € F(X|L). Thus we call F(X|L) the free associative algebra with deriva-
tions on X over F' and we refer to its elements as differential polynomials or L-polynomials.

Let A be an L-algebra over F. Recall that an L-polynomial f(z1,...,2,) € F(X|L) is a differential
polynomial identity of A (or simply an L-identity), and we write f =0, if f(a1,...,a,) =0 for all a; € A,
1 < i < n. We denote by Id*(A) = {f € F(X|L) | f = 0 on A} the Tr-ideal of L-identities of A4, i.e.,
Id*(A) is an ideal of F(X|L) invariant under all endomorphisms ¢ of F(X|L) such that o(f*) = o(f)", for
all f € F(X|L)y and h € U(L) (see for example [14, 17, 29, 30]).

Let H be a Lie subalgebra of L. If A is an L-algebra, then by restricting the action, A can be regarded
as a H-algebra. In this case we can identify the Tp-ideal Id*(A) and the Ty-ideal Id” (A), i.e., in Id*(A)
we omit the differential identities 2° = 0, for all § € L\ H. Furthermore, any algebra A can be regarded as
L-algebra by letting L act on A trivially, i.e., L acts on A as the trivial Lie algebra. Hence the theory of
differential identities generalizes the ordinary theory of polynomial identities.

As in the ordinary case, in characteristic zero, every L-identity is equivalent to a system of multilinear
ones. We denote by

PL = span{xi?l) . xi"&) | o €8,,d;, € B}
the vector space of multilinear differential polynomials in the variables z1,...,x,, n > 1. Since IdL(A) is
generated, as T -ideal, by the multilinear L-polynomials it contains, the study of 1t (A) is equivalent to the
study of PLN1d*(A) for all n > 1. In case U(L) acts on A as a suitable finite dimensional subalgbera of the
endomorphism ring of A, then PL is finite dimensional and we denote by

L PL
c/(A) =dimp ———2——,
n(4) P pLA1dL(4)
2
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the nth differential codimension of A or the nth L-codimension of A. From now on, we will assume that the
action of U(L) is always of this type.

Given a variety V of L-algebras the growth of V is defined as the growth of the sequence of differential
codimensions of any L-algebra A generating V, i.e., V = varl'(A). In this case we set cZ(V) = cL(A), n > 1.
Then we say that V has polynomial growth if there exist C,# such that c¢Z(V) < Cn! and that V has almost
polynomial growth if ¢£ (V) is not polynomially bounded but every proper subvariety has polynomial growth.

In [31] the authors proved that there exists only two L-varieties generated by finite dimensional L-algebras
of almost polynomial growth. Next we are going to describe such varieties.

Let us denote by UT5, the L-algebra of 2 x 2 upper triangular matrices over F' where L acts trivially on
it. Since 2° =0, for all § € L, is a differential identity of UT,, we are dealing with ordinary identities. Thus
by [19], it follows that the algebra UT, generates an L-variety of almost polynomial growth. Moreover, we
have the following result (see [26]).

Theorem 1.

1. Id“(UTy) = ([z1, z2][2s, z4)) 1, ;
2. cHUTy) =2""Y(n—-2) +2.

Let now denote by UT5 the L-algebra of 2 x 2 upper triangular matrices over F' where L acts on it as the
1-dimensional Lie algebra spanned by the inner derivation € induced by eqq, i.e.

(ae11 + begs + ce12)® = ceia,

for all a,b,c € F, where e;;’s are the usual matrix units. In [9], the authors proved that UT5 has almost
polynomial growth and also they proved the following.

Theorem 2. [9, Theorem 5]

1. IdL(UTf) = (xiz — a5, x5x§, [z1,22]° — [z1,22])1,;
2. cL(UTS) =27 'n — 1.

The above algebras characterize the L-varieties of polynomial growth.

Theorem 3. [31, Theorem 18] Let A be a finite dimensional L-algebra. Then the sequence ck(A), n > 1, is
polynomially bounded if and only if UTy, UTS ¢ var®(A).

Recall that given two L-algebras A and B, A is Tr-equivalent to B and we write A ~p, B in case
Id*(A) = I1d"(B). Thus as a consequence of the above theorem, we have that the algebras UT, and UTS are
the only two finite dimensional L-algebras, up to T -equivalence, generating L-varieties of almost polynomial
growth.

As in the ordinary case, a useful tool when studying L-identities of algebras with 1 is provided by the
so-called proper polynomials.
Recall that a left normed commutator of length n > 2 in the variables x;’s is defined inductively by setting

h1 hp—1 h _ h1 hn—1 ad hn
[, . oy, et = =[xt x, ] e

where hq,...h, € U(L). An L-polynomial f(z1,...,2,) € F(X|L) is a proper L-polynomial if it is a linear
combination of elements of the type
x?ll .. ‘x?k’“wl W
where h; € U(L), h; # 1y(z), for all 1 < i < k, and wy,...,w,, are (eventually empty) left normed Lie
commutators in x;’s.
In characteristic zero, if A is an unitary L-algebra, then 1t (A) is generated, as T7,-ideal, by the multilinear
proper L-polynomials (see [1, Lemma 2.1]). Thus if I'Z denotes the subspace of P of multilinear proper
L-polynomials in n > 1 variables, and T'§ = span{1}, then we define the sequence of proper L-codimensions

of A as
L(A) = dim _Tn n>0
n Pripuafay T
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For unitary L-algebra A, the relation between the L-codimensions and the proper L-codimensions is given
by the following

L — (n\ 1
A) = “(A > 1.
b =3 (F)r, nz
This relation can be proved following closely the proof in the ordinary case in Theorem 4.3.1 of [2].

Next we present a result on proper L-polynomials which will be useful later. Recall that given two sets

of L-polynomials S, 5" C F(X|L), we say that S’ is a consequence of S if S’ C (S)r, .
Proposition 4. Leti > 1. If k is even, then Fﬁﬂ- s a consequence of F%. Otherwise, Fﬁﬂ- 18 a consequence
of TE plus the polynomial [x1,x2] - - - [k, Tp41)-

Proof. We start by proving the statement in case k is even.
Let w € Fﬁﬂ. be a generator and ¢ > 1. Suppose first that w is a product of commutators. If w is a
product of commutators of length 2, then

_ 1.h1 _ho hir—1 _ hg hrpti—1 _Pryi
w= [z, 25?2 2 ]"'[xk+i:1 'y Trqg ],
. R :
where hy, ..., hyy; € U(L). Thus w is a consequence of [z, 2] .- [z,*",21*] € TL and we are done.

On the other hand, if w contains a commutator u of length m > 2, then u can be viewed as a consequence
of a commutator of length < m. Thus by the above, we get also that w is a consequence of T'. Hence

we may assume that w = ... g™ [...]...[..] with t > 0 and hy,..., hy € U(L). If t < i, then by the

i1 it
previous case, w is a consequence of Fﬁ. Otherwise, if ¢ > ¢, then w is a consequence of the polynomial

:rZT - o:c?: [-+]--<[--], where r =i+ 1, and we are done also in this case.

Now suppose that k is odd.

If we prove that I'j, ; is a consequence of I'y; and the polynomial [z, 2] - - - [k, Zr41], by the first part
of the proof we reach the desired conclusion. Thus let w € I‘ﬁ t1 be a generator. If either w contains a

h1
pe
as above, that w is a consequence of Fﬁ . Thus we may assume that w is product of commutators of length
2, i.e.,

gl ]o [ ] with ¢ > 0, ha,..., h € U(L), we have,

it

commutator of length greater than 2 or w =z

h
w = [.’II;”,J)IQ—Q] e [ka’xkiJrll]’

where hy,...,hiy1 € U(L). If hy € spangp{ly ()} for all 1 <i <k + 1, then w = By, z2] - - - [2, 2p11], for
some 3 € F, and we are done. Hence we may assume that h; ¢ spanp{1y ()}, for some i. We write
hi—s _hi—2

h1 hz] . hi hi+1[ hiq1 hi+2][ hi hk+1]

w =[x}, x5 [2;25° 225 |z Tit1 Wit1 2 Tiga [T » Ty
h,;_ hi_ h,; : hi hi N h
- [x?lvz}zw] s [zi—337xi—22]xi+?x?1 [fviﬁf,wiQQHwZ",xkiﬁl]-

Since yz = [y, 2] + zy and a commutator of length m > 2 is a consequence of a commutator of length < m,
then

hi hi+1[ h1 hQ]. hi_3 hi—z][ hit1 hi+2H hi hk+1]

w =(z w ey w?] e [0 L e ay at w i
hi hir..h h hi— hi_— h; h; hi h
- 371‘++11$i [z7", 25%] - [331'—337 xi—zz][%-ﬁl ) $i++22][$kk7xkf11]) (mod (T'x)7, ).
If hit1 ¢ spanp{ly(z)}, then w is a consequence of y" [z}, z52] - .- [x?i}f, x?i‘gz][achi“ e | e = Ik

i+1 T2 P Ty

and we are done. Hence suppose that h;11 = 1y(z,), then
_ _hi h h hi—3 _hi_ hi hi hi hi
W= w2t 252 [xi_;,xi_22][xi++11,mi;;][xk",mkfll] (mod (T'x)7, ).
Without loss of generality, we may assume that h; = d; - - - 05, where 01,...,0; € L. Let I = {i1,...,4,} and

J=4{j1,...,7:} be two disjoint sets such that TUJ = {1,...,s},i; <--- < i, and j; < --- < j;, respectively.
We set c; = 0, - 0;, and ¢y = Jj, - - - 0;,, then by definition of derivation, we have the following

h; o h; h; cr_.cj
T i1 = (Tirip1)" — v — E o iy
I,J

Since ¢y, cy € U(L) for all I, J, it follows that w is a consequence of

h[ hy hz]”

a2 hi_3 hi—?][ hit1 hi+2][ hi hk+1] c 1—%

S ET S Liv1 > Tiqo [T > Ty
4
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and this completes the proof. O
As a consequence we have the following.
Corollary 5. Let A be an L-algebra with 1. If vE(A) =0 for some k > 1, then v%(A) =0 for all m > k.

Remark that these results are general facts not related to the L-identities of UT5.

One of the main tool in the study of T -ideals is the representation theory of the symmetric group
S,. In fact, the natural left S,-action o(z?) = x’;(i) turns PL into a S,,-module and therefore the space
PL(A) = PL/(PE N1d¥(A)) becomes a left S,-module. Similarly TX(A) = I'L/(TE N1d*(A)) is an S,,.-
module under the induced action. We denote by yL(A) and L (A) the S,-characters of PL(A) and I'Z(A),
respectively, and we refer to them as the nth L-cocharacter and the nth proper L-cocharacter of A. Since
char F' = 0, by complete reducibility we can write

Xrl{(A) = kax)\a 1/)7111(‘4) = Zml)\X/\a
AFn AFn
where A is a partition of n, x» is the irreducible S,-character associated to A, and my,m) > 0 are the

corresponding multiplicities. It is clear that by knowing the decomposition of the (proper) cocharacter of A,
one can get informations about the corresponding (proper) codimensions.

3. CONSTRUCTING L-SUBVARIETIES IN VARE(UTY)

The main goal of this section is to construct some suitable finite dimensional L-algebras belonging to the
L-variety generated by UT5 whose L-codimension sequence grows polynomially.
For all £ > 2 let

€ 2 k—2
k:SpanF{ellaE7E a"'7E a€12a613a-~-761k}

be the subalgebra of UTy(F) where E = Z?:_; eii+1 and L acts on A5 as the 1-dimensional Lie algebra
spanned by the derivation ¢ = ad,,, . Remark that e§; = (E’)* =0, for all 1 < j <k — 2, and €5, = ey;, for
all 2 <1 < k.

We also denote by (A$,)* the subalgebra of UTy(F') obtained by flipping Af along its secondary diagonal.
Hence

€11

2 k—2
(A7) = spanF{ekk, E,E*,...,E° % e, e, ... ,ek,l,k}.

In this case, L acts on (A5)* as the 1-dimensional Lie algebra spanned by the derivation € = ad,,, . Notice
that one can determine the L-polynomial identities of such an L-algebra via the ones of Af. In fact, if
f € F(X|L) and f* is the L-polynomial obtained by reversing the order of the variables in each monomial
of f, then one can easily check that f € Id"(A$) if and only if f* € Id*((A5)*). Notice that such kind of
algebras was first studied in the ordinary case in [5]

In what follows, we explicitly describe the L-identities of A} and (Af,)* for any k > 2.

Lemma 6 ([30], Theorem 3). Let k = 2, then:
1. Id"(A5) = <x‘i2 —zxi, x{Ta, T1T5 — T2x] — [T1,Z2)) T, ;
2. Id"((A35)") = (af —af, @125, afmy — 2521 — [0, %2])1;
3. ch(A3) = cE((45)") = n + 1.
Lemma 7. Let k > 3, then:
2
L Id"(A7) = (a5 —af, afa, [w1,20]" — @1, 22], afwy- - ai)y;
k—2 n k—2n—I1+1 n—j
2. ck(A3) :2+n+z <Z>(n—l+1)+z Z (l— 1)(]’— 1) = qn*=1, for some q > 0.
1=0 I=1 j=2
2
Hence 1d"((A7)") = (2§ —af, 25a5, (w1, 2] —[w1,20], @1 wp1af)r, and cf((A7)") = ck(AF) ~ qn* .
Proof. Write I = (25" — a5, 2545, [1, 2] — [#1, 2], a5@e- - x) 7, . It is clear that I C Id*(A%). In order
to prove the opposite inclusion, first we find a set of generators of P modulo PE NI, for all n > 1.
Let f € Pl be a multilinear L-polynomial of degree n. Because of the L-identities x‘ij —z7 =0 and

2525 = 0, in each monomial of f can occur at most one differential variable x5. Moreover, [z1,x2]z§ = 0
5
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and x§[x1, x2] = 0 are a consequences of z§x§ = 0 and [z1, 22|° — [z1, 23] = 0. Furthermore, from [z, z9]° —

[x1,22] = 0 and z5zo -z = 0, it follows also [z1,x2]xs - 2x4+1 = 0. Finally, since [x1, zo][z3,24] = 0 is
a consequence of zjz§ = 0 and [x1, z2]° — [z1,22] = 0, every left normed commutator [z;,,...,z;,] can be
written as a linear combination of [z;,,...,;,] where i1 > i2 < ... < i (see for instance [2, Theorem 5.2.1]).

By taking into account the previous remarks plus the Poincaré-Birkhoff-Witt theorem, modulo I, f is a
linear combination of L-polynomials of the type

(1)

wheret+l=n—-2,r+s=n—-11<k—-1,s<k—-1i>j<i <...<ip, 1 <...<jiym<p; <...<py
and q; < ... < gs. It follows that the space P is generated modulo PX N I by the above polynomials.

We next show that they are linearly independent modulo IdL(Ai). To that end, let f € Id” (A5) be a
linear combination of such polynomials and write

1> g
f=oamy - mgt By maaSt Y Y orgmi, e w s wilr, o xit Y)Y BrQlp,  Tp, Ty, Ty,
I<k—11,7 s<k—1P,Q

xl...xn, ‘/Eil.'.xit[xi7xj]xj1'.'le7

= e
L2 Tpdy,  Lpy o Lp,LypLqy =" Ty,

where I = {4,7,41,...,4:}, J = {j1,.- ..}, P ={m,p1,...,p-} and @ = {q1,...,qs} are disjoint sets of
indices subjected to the above conditions.

First suppose that « # 0, then by making the evaluation z; = --- = x, = ej; one gets a« = 0, a
contradiction.

Suppose that there exists ay ; # 0 for some I < k — 1, I and J. Then by making the evaluation x; = e;2,
Tj=xy = =x;, =e; and xj, =--- =2, = F, we get ar y = 0, a contradiction.

Now suppose that g # 0, then if one considers the evaluation z; = ejp and x4 = -+ = x,, = e11, we get
£ =0, a contradiction.

Finally, if Bpg # 0 for some s < k — 1, P and @, then let z,, = ej2, z,, = -+ = z, = e;; and
Zq, =+ =24, = I, obtaining Bp g = 0, a contradiction.

Therefore the elements in (1) are linearly independent modulo PF N1d*(A%) and, since PX n1d%(A5) D
PL'N 1, they form a basis of PX modulo PL N1d"(A) and Id"(A3) = I.
Thus, by counting we get

k—2 k—2n—i+1 .
chA) =2+n+Y <7Z>(n—l+1)+z Z (’Z_ f)(j—n ~ qnk1,
1=0 =1 j=2
for some ¢ > 0 and we are done.
Notice that, from the previous results, it follows also that Id"((A5)*) = (28" — a5, afas, [x1,22]¢ —
[x1, 2], @1 apoaaf)r, and e ((47)7) = cf (A7) = qn* " O

We now introduce, for any fixed k > 2, a unitary L-algebra in var’(UT5) which codimension sequence
grows as nF L.
To this end, for all £ > 2, let

2 k—2
NE:SpanF{I,E,E,...,E 76127613,...,61k}

where I is the identity k x k matrix and L acts on Nj as the 1-dimensional Lie algebra spanned by the
derivation € = ad,,, . In this case I = (E7)* =0, for all 1 < j <k —1, and €5, = ey, for all 2 < i < k.

Lemma 8. Let k > 2, then:

1 Id(Ng) = (a5 — a5, aSag, o1, 20)f — 21,20, [21,. . 2h]) 1y s
2. ch(Np) =1+ 021 (1)5 ~ qn*~, for some g > 0.

Proof. Let Q = (x‘f — a5, 2525, [x1, 2] — [x1, 2], [%1,...,2k])7, . It is easily proved that Q C IdL(N;g).
Let now f be an L-identity of N;. We may assume that f is multilinear and since V; is an unitary algebra,
we may take f proper.
After reducing f modulo @, we get that f is the zero polynomial if deg f > k and it is a linear combination
of commutators
[Z‘i,x‘g,...,ﬂin] [xi,xl,...,@,...,xn]
6



if deg f < k, where 2 < ¢ < n and the symbol Z; means that the variable x; is omitted.
Hence, modulo @,

n
f:Oé[l‘i,l‘g,...,.%‘n]+Zﬂi[.’lii,.’lil,...,/x\i,...,In],
1=2

where n < k — 1. We claim that such commutators are linearly independent modulo Id” (N7), i.e. fis the
zero polynomial modulo Id*(N%) and this will imply that Q = Id*(N;), as required.

Suppose that 3; # 0 for some 7, then we consider the evaluation x; = e12, x; = E for all j # i and we get
B; = 0, a contradiction. Now, if o # 0, then we make the evaluation z; = --- =z, = F and we get « =0, a
contradiction. This says that f € @ and so Q = IdL(N,f) as claimed.

The arguments above also prove that

i, ifj<k-—1
L Ng _ j? 1 =~
7 (Ve 0, ifj>k

Hence we also get that

k—1 k—1
n n
ch(Nf) =1+ ( )vf(Ni) =1+ <,)qun’“—1,

J
for some g > 0. (]

We want to highlight that the case k = 2 was already studied in [30, Theorem 1]. Moreover, it is clear
that if k = 1, then Nf = F, IdL(Nf) = {[z1, 73], 25)7, and cE(N§) =1 for all n > 1.

4. ON THE STRUCTURE OF ALGEBRAS GENERATING L-SUBVARIETIES OF VARL(UTY)

In this section we shall study the structure of L-algebras belonging to the L-variety generated by UTs.

Notice that in what follows we may assume, without loss of generality, that L is a 1-dimensional Lie
algebra spanned by ¢.

We start by proving that any L-algebra inside varl (UTs) satisfies the same L-identities of a finite dimen-
sional L-algebra.

Theorem 9. If A € var®(UTY) is a finitely generated L-algebra over an algebraically closed field F of
characteristic zero, then A is Ty -equivalent to a finite dimensional L-algebra over F'.

Proof. If A € var®(UT5), then by Theorem 2, z°° —z° € 1d*(A). Hence U(L) acts on A as the 2-dimensional
semisimple Hopf algebra H with basis {1y,&} where £2 = &. Thus A can be regarded as an algebra with
H-action and we may restrict the T-ideal 1d* (A) to the Ty-ideal 1d” (A). Thus the claim follows from [16,
Theorem 1.1]. O

We refer the reader to [13, 16] for an account on algebras with an Hopf algebra action and the related
theory of polynomial identities.
Now we recall the following result characterizing the nth L-cocharacter of UTS.

Theorem 10 ([9], Theorem 12). If xL(UTS) =", ., max» is the nth cocharacter of UTS, then
n+1, A= (n)
2q+1), A=(p+qp)

g+1,  A=(@+q¢p1)’
0, otherwise

my =

where p,q > 0.
In order to characterize the L-subvariety of var’(UTs) we are going to prove the following.

Theorem 11. If A € var®(UT5), then A is Ty -equivalent to a finitely generated L-algebra.
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Proof. Let B be the relatively free algebra of var’(A) with 3 generators. We claim that Id*(A4) = Id%(B).
Clearly Id"(A) C 1d¥(B), thus we shall prove the opposite inclusion.

Let f e Id* (B) be a multilinear polynomial of degree n and let M be the S,-module generated by f.
Without loss of generality, we may assume that M is irreducible. In fact, if M = M; & --- @& My, is the
decomposition into irreducible components, where M; is generated by f; as S,-module, 1 < ¢ < k, then
fi € Id¥(A) for all i implies that also f € Id“(A).

Let x» be the irreducible character of M, where A = (\y,..., ) F n, and let

er, = Z (sgno)ro

TERT,
UGCTA

be the corresponding essential idempotent (see for instance [12, Chapter 2]). Here recall that Ry, and Cr,
stand for the row-stabilizer and the column-stabilizer of the Young tableau T}, respectively.

If Ay # 0 or A3 > 1, then by Theorem 10, it follows that f € IdL(A). Thus we may assume that Ay =0
and A3 < 1.

Let now consider g = (ZTG Ry 7') f and notice that g is symmetric in at most two disjoint subsets Xy,
A

X, of differential variables. If we identify all the variables of X; with x; and all the variables of X5 with
x9 in g, we obtain the homogeneous polynomial p = p(z1, 2, x3) which is still an L-identity of B. But from
the definition of relatively free algebra, it follows that p € Id” (A). By multilinearizing the polynomial p, we
get the polynomial A\j!A\olg(z1,...2,). Hence g € IdL(A) and, since M is irreducible and g # 0, it follows
that also f € Id“(A). This completes the proof. O

As a consequence of Theorems 9 and 11 we have the following.

Corollary 12. If A € var®(UTY) is an L-algebra over an algebraically closed field F' of characteristic zero,
then var®(A) = vark(B) for some finite dimensional L-algebra B over F.

According to Corollary 12, from now on we will always assume, without loss of generality, that if V C
varl (UTs), then V = varl'(A) where A is a finite dimensional L-algebra.

Now we are going to describe the structure of such finite dimensional L-algebras belonging to var®(UT).

First we recall some definitions. A subalgebra (ideal) B of A is an L-subalgebra (ideal) if it is a subalgebra
(ideal) such that BY C B, where B denotes the set of all h(b), for all b € B and h € U(L).

Let A be a finite dimensional L-algebras over an algebraically closed field. By the Wedderburn-Malcev
Theorem for associative algebras, we can write

(2) A=B+J

where B is a maximal semisimple unitary subalgebra of A and J = J(A) is its Jacobson radical. Notice
that although J is an L-invariant ideal of A (see [15]), it may does not exist an L-invariant Wedderburn-
Malcev decomposition, i.e., it may happen that all semisimple subalgebras B of A that satisfy (2) are not
L-subalgebras of A. For example, the algebra UTY of 2 x 2 upper triangular matrices where L acts as the
1-dimensional Lie algebra spanned by the inner derivation ¢ induced by e;2 has no L-invariant Wedderburn-
Malcev decomposition (see [31, Example 2]). Things are different inside var”(UT5), in fact at the end of the
section, we will prove that, up to Tr-equivalence, we can always assume that a subvariety of varl(UT5) is
generated by an L-algebra with an L-invariant Wedderburn-Malcev decomposition.

To this end, first recall that J can be decompose into direct sum of B-bimodules

J = Joo @ Jo1 @ J10 D J11

where for i, k € {0,1}, Jyi, is a left faithful module or a 0-left module according as i = 1 or 4 = 0, respectively.
Similarly, J;x is a right faithful module or a O-right module according as £ = 1 or k = 0, respectively.
Moreover, for i,k,l,m € {0,1}, JixJim C Ok 1Jim where 0y ; is the Kronecker delta and J1; = BN for some

nilpotent subalgebra N of A commuting with B. For a proof of this result see [11, Lemma 2].

Proposition 13. Let A = B+ J be a finite dimensional L-algebra. If § € Der(A), then 1% € Jo1 + Jio-
Moreover, J3, C Joo + Jo1 + Jio, J& C Joo + Jo1 + Ji1, S5 € Joo + Jio + J11 and JP; C Jo1 + Jio + Ji1-
8



Proof. Since 6 € Der(A), by [15, Theorem 4.3] § = ady +ad; +¢’, where b € B, j € J and §' € Der(A4) is
such that B% = 0. Thus since [J11, 18] = Joolp = 1pJoo = 0, we get 153 = 1?9dj € Jo1 + Jio-

Let joo € Joo. Since 1gJyg = 0, we get 0 = 1%]’00 + lngo and so it follows that 13]'30 € Jig. On
the other hand, since Jyylg = 0, we have 0 = jgolg + jool‘SB. Then jgolg € Jo1. Thus it follows that
J8o € Joo + Jo1 + Jio-

Let now j11 € Ji1. Thenj‘ls1 = (jlllB)‘S = j‘fllB—i—jlll‘sB € Jo1+J1o+J11- Thus we get Jfl C Jo1+J1o+J11-
Similarly it can be proved for Jy; and Jyg. O

In case of algebras belonging to var’ (UTs), the action of L on J and its components can be assumed to
be much more simpler.

Lemma 14. IfA =B+Je UCLT’L(UTQE) with J = JOO + Jl() + JOl + Jll; then jE :j fOT‘ a”j S J()l U Jl().

Proof. If j € Joy (resp. j € Jip), then j = [j,15] (resp. 7 = [lp,j]). Thus the claim follows since
[Il,zg}s — [Il,xz] S IdL(A) O
Lemma 15. Let A= B + J e UGTL(UTQE) Then JSOJ(H = J10J80 = J151J10 = J01J1€1 = J01J10 = J10J01 =
Jo1[J11, J11) = [J11, J11]J10 = [Joo, Joo]Jo1 = J10[Joo, Joo] = 0.

Proof. Since [x1, 23] — [z1,22] = 0 and 2525 = 0 on var®(UTY), the result immediately follows applying
Lemma 14. 0

Theorem 16. If A = B+ J € var®*(UTs) then, up to Ty -equivalence, B C B.
Proof. If J = 0 there is nothing to prove, so let J # 0 and since A € varl(UT5) then B=F @ --- & F. By
Proposition 13 it readily follows that if either 15 = 0 or Jo1 = Jip = 0, then B* C B and we are done also

in this case.

So, let suppose 13 = j # 0, where j € Jo1 + Jig, and let consider ¢/ = ¢ — ad; € Der(A). Remark
that ¢’ # 0 in fact if ¢/ = 0, then ¢ = ad; and 1€B2 = j¢ = 0, since J& = J% = 0 and, by Lemma 15,
Jo1J10 = J10Jo1 = 0. This is a contradiction since " —af € IdL(A).

Let now A.s be the L-algebra A where L acts on it as the 1-dimensional Lie algebra spanned by &’. Clearly
1% =0, B¢ C B and a straightforward computation can also prove that Ao € var(UT%). We claim that
Id*(A) = Id*(A./) and this will complete the proof.

Let f € Id“(A) be a multilinear polynomial of degree n. According to [9, Theorem 5] we can write f as

n
— € g
f=ax... 2, + E BrTiy .. Ti _ X5+ E VPiTp, - Tp, [TE, Tj .z, ]+ g,
k=1 Pyt

where g € IdL(UTQE) C IdL(A), < o <idp_1,p1 <+ <pPmand j1 < -+ < Jn_m—1. Notice that if we

make the evaluation 1 = --- =z, = 1p, we get &« = 0. Thus
n
(3) = Z Briy - o @i, Ty, + Z VPtTpy -+ - Tpy, [Ii, LATEREE ’xjnfnm—l] tg€ IdL(A)'
k=1 Pt

In order to prove that f € IdL(AE/), we have to show that

n
f= Z Briy . Ti,_ X5 + Z VPAZpy - T, [TL s Thy ey T ]+ G
k=1 Pyt
vanishes under every evaluation of elements of A. Here § stands for the polynomial ¢ in which we substituted
every differential variable z° with x° .
Since ¢’ = € — ad;, it is enough to prove that

n

ad; ad; L
E Brxiy . Ty, Ty + g VPiZp, - Tp, [Ty T, gy X, ] € Id7(Ae).
k=1 Pt

But by definition of inner derivation, the claim follows since [j, z]° — [f,z] € Id¥(A) and (3) holds. Hence
feld-(A).
Similarly it can be proved that Id*(A./) C Id*(A). Thus A ~7, A. and the claim is proved. O
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As a consequence of Proposition 13, Lemma 14 and Theorem 16 we get the following.
Corollary 17. If A = B+J € var (UTS) with J = Joo+J10+Jo1 +J11, then J% C Jiy., for alli, k € {0,1}.

According to the previous results, from now on we will assume that the Wedderburn—Malcev decomposition
and the Jacobson radical decomposition into bimodules of every considered L-algebra are L-invariant.

5. ON MINIMAL L-SUBVARIETIES IN VARY(UTS)

In this section we shall prove that the L-algebras A7, (A%)* and Ny introduced in section 3 generate
minimal L-varieties of polynomial growth. We start with the definition of minimal L-variety.

Definition 1. An L-variety V is said to be minimal of polynomial growth if ck(V) ~ qn*, for some q¢ > 0,
and for any proper L-subvariety U C V, we have that ck(U) ~ ¢'nt with t < k.

Algebras generating minimal varieties will play an important role in the main result, since we shall prove
that any L-algebra inside var(UTs) has the same differential identities of a direct sum of such kind of
algebra plus a nilpotent algebra, eventually.

Remark 18 ([25], Remark 2). Let A= F + J be an L-algebra with J = Jog + Jig + Jo1 + J11. If A satisfies
the identity [x1,..., 2] = 0 for some t > 2, then Jy; = Ji0 = 0.
Proof. The proof immediately follows from the fact that Jig = [J10, F, ..., F] and Jo; = [Jo1, F, ..., F]. O
—— \_\,1_./
t—1 t—

Theorem 19. For all k > 2, Ni generates a minimal L-variety of polynomial growth.

Proof. Let suppose that A € var(Ng) and cZ(A) =~ gn*~! for some ¢ > 0. We shall prove that A ~p, N
and this will complete the proof.
Since cZ(A) is polynomially bounded, by [31, Theorem 8] we may assume that

A:Bl@"'@Bm

where By, ..., By, are finite dimensional L-algebras such that dimpg % < 1, for all 1 < i < m. This implies
that either B; 2 F + J(B;) or B; & J(B;) is a nilpotent algebra. Moreover, since

e (A) < e(B1) + -+ + ¢/ (Bm),
then there exists B; such that cZ(B;) ~ bn*~1, for some b > 0. Thus
var® (Ng) D varl (A) D varl(F + J(B;)) 2 var®(F + J11(By))

and ck(F + J(B;)) ~ bn*~!- Here remark that F + J;;(B;) is an L-subalgebra of F + J(B;) since, according
to Theorem 16, in var’ (UTs) we may assume < = 0 and J5; C Jy; for all 4, j € {0,1}.
Moreover, by Remark 18, we get that Jio(B;) = Jo1(B;) = 0 and so

F+J(B;) = (F + Jll(Bi)) @ Joo(By),

as L-algebras, and cZ(F + J(B;)) = cE(F + J11(B;)) for n large enough.

It turns out that, in order to prove A ~p, N, it suffices to show that F' + Jy1(B;) ~7, Ni. Hence we
assume, as we may, that A is a unitary L-algebra and we shall look at its proper codimension and cocharacter
sequences.

Since cL(A) ~ gn*~1, then

k—1

n

k=3 (7)ot
i=0

and by Corollary 5, vF(A) # 0 for all 0 <i <k — 1 and 7> (A) = 0 for all i > k.

Moreover, recall that since Id“(Ng) € 1d¥(A), then #SL(A) is isomorphic to a quotient module of
rf . & i .
Tl N Thus if Y7 (A) = >, maxx and PF(Nf) = >, mixx are the i-th proper L-cocharacters of

A and N, respectively, then my < m/ for all A q.
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From now on, suppose k > 3. For all 3 <i <k —1,let f; = [21,22,...,22] and fo = [25,21,...,21] be
— ——

i—1 i—1
the highest weight vectors corresponding to the partitions A\ = (i — 1,1) and A = (i), respectively. It is
clear that f; and f are not differential identities of N, thus x(;_1,1) and x(;) participate in the i-th proper
L-cocharacter of N; with a non-zero multiplicities.
Moreover, since v(Ng) =i = deg x(i—1,1) + deg x(;), for all 2 < i < k — 1, we get that

O (NE) = X(i-1,1) + X(@)-
Now, since y{_, (A) # 0 then either ¢} | (A) = X(k—1) OF i (A) = X(k—2,1) OF YE (A) = X(k—1) T X(k—2,1)-

Fist suppose that & | (A) = X(k—1)- Then [z1,23,...,22] = 0 on A and this trivially implies [x§, z1, ..., 21]
——— —_———
k—2 k-2
0 on A. Thus ¢f_;(A) =0 and vf_,(A4) = 0, a contradiction.
Now suppose & (A) = X(k—2,1), then [z§,z1,...,21] = 0 on A. Let substitute the variable z1 with z; -+
—_———
k—2

and let consider the multihomogeneous component with degree £ — 2 in x7 and 1 in z5. As a consequence,
we get the following identity modulo Id*(UT) :

(4) [xgvmla cee axl] + (k - 2)[$i7$2,$1, cee axl] =0.

k—2 k—3
Since [z1, x9] — [25, xo] — [x1,25] € IdX(UTS) C 1d*(A), we get

(X2, 25,21, ..., 21] = [x2,21, ..., 21] — [25, 21, ..., 21].
—— — —

k—3 k—2 k—2
By putting together the latter one with (4) we get the identity
(5) (k= 2)[z2,21,...,21] = (k= 1)[25, 21, ..., 21].

— —
k—2 k—2
Moreover, by substituting the variable xo with 2§ in (4) and recalling that x§2 = x5, we also obtain
[#5,21,...,21] = 0. From this one plus identity (5), we finally get the identity [x2,z1,...,21] = 0, thus
— —
k—2 k—2

Yf_1(A) =0 and v} (A) = 0, a contradiction. Hence it must be F_;(A) = X(r—1) + X(k—2,1)-
Now, for all 2 < i < k — 2, as before either ¢F(A) = X(i) or PE(A) = X(i—1,1) OF Pl (A) = X(@i) + X(i—1,1)-

If F(A) = X(iy then [z1,29,...,25] = 0 on A. Thus also [z1,72,...,22] = 0 that is absurd for the first
— —
i—1 k—2
part of the proof. Analogously, if ¥*(A) = x(;_1,1) then [z, 21,...,21] =0 on A and so [z5,z1,...,31] =0,
— N—
i—1 k—2

a contradiction.
Thus ¥F(A) = X@) + X(i-1,1) = YE(NE), forall 1 <i<k—1and

cg(A):]il(Z) —1+Z<)Z—c (NY).

i=0
Hence A and N have the same codimension sequence and, since 1d* (N, g) C Id"(A), we get the equality
1d%(Ng) = 1d%(A), as required.
Notice that if & = 2, then ¥2(N3) = x(1,1) + X(2) and with similar arguments as in the first part of the
proof we get ¥y (A) = 1o(N5), cL(A) = cE(N5) and so A ~p, N§. O

We now recall a result about the Jacobson radical of an algebra belonging to varL(Ai) that will be very
useful hereafter.

Lemma 20. Let A = F +J € vark (A7) (resp. A = F+J € var((A3)")). Then J§; = 0 and Jo =
[J11, J11] = 0 (resp. Jio = [J11,J11] = 0).
11



Proof. We will prove the statement in case A € var®(A5). The other one will follow analogously.
Recall that according to Corollary 17, J§; C Ji1. Moreover, since a5z, - - - x € Id¥(A5) C 1d¥(A), for all
j € Ji1p we get 5 1p---1p = 0. Thus, if we let j° :3 € Ji1 then
———

k—1
0=jlp---1p =],
~—_——
k-1

since 1p acts as a unit element on Ji;. Now, due to the identity [z1,23]° — [z1,22] = 0, we get also
[J11, J11] = 0.

Finally, by Lemma 14, for all a € Jy1, a® = a. Thus by using the same argument as before, we get that
Jo1 = Josl =0. O

Lemma 21. Let A = F + J € vark(45) (resp. A =F +J € varl((A3)*)). If cE(A) =~ qgn*~1, for some
q >0, then A ~p, A5 (resp. A~ (AL)*).

Proof. We prove the statement for A = F + J € var®(A5). The case A = F + J € varl'((45)*) will follow
with similar arguments.

By the previous Lemma, Jo1 = [J11,J11] = 0, so we may assume A = F + Jog + J10 + J11 and Jyg
commutative. Moreover Ji; = 0.

First suppose that JyoJg, 2 = 0.

If J™ = 0, then for all n > m we shall prove that g = xy---zp2f22---2—1 € IdL(A). Since such a
monomial is multilinear, we can evaluate each variable in a basis of A consisting in an union of a basis of
Joo, J10, J11 and 1p. Since n > m and J™ = 0, if we evaluate all the variables in J then we get zero, thus
at least one variable must be evaluated in 1.

Let focus our attention to the variable x1. It is clear that if x; is evaluated in 1z or on Ji1, then g vanishes
since F* = J§; = 0. If we evaluate z; in an element j19 € Jig, then ji; = jio and we are forced to evaluate
ZTo,...,Tp_1 on elements of Jyo. Since JloJ(lf(;z = 0, we get zero. Finally, let evaluate z; on an element
Joo € Joo. Then j5o € Joo and since there exists ¢ such that x; is evaluated in 1p, also in this case we get
Z€ro.

Therefore we have proved that zj - - zpzSas - - 2x_1 € Id¥(A). From this identity and from [x1, 22]° —
[z1, 23] = 0 follows also that xg1 - zp[T1, x2]as - 2) € IdL(A).

Since A € varl(A3), if f € PL with deg f = n > m, then after reducing f modulo the 7 -ideal generated
by the differential identities of A7 and by g, by using also Lemma 7, we have that f is a linear combination
of the L-polynomials

xl...mn, ‘/I:Zl ...:I:Z-t [xl7xj]le ...:I:jl7
Ty Ty, Lpy "'xprxinxth T gy
wheret+l=n—-2,r+s=n—1,1<k—2,s<k—-2,i>j<n1<... <, 1 <...<ji,m<p1 <...<Dy

and ¢; < ... < ¢s. Remark that [,s < k — 2 since g = 0 on A.
Therefore

k—3 k—=3n—I+1 .
L < n _ R W S AUV )
cn(A)_2+n+Z(l>(n l—|—1)+; Jz:; (l—l (j—1)=¢n"7,

for some ¢’ > 0. This is a contradiction, since we are assuming that cZ(A) ~ gn*~1.

Thus J10J§O_2 # 0 and there exist a € Jyg and by, ..., bx_o € Jog such that aby -+ - bx_o # 0. Let f € IdL(A)
be a multilinear L-polynomial of degree n. By Lemma 7, f modulo 1t (A3) can be written as

g
f=axy - -xy+ Bro - xpai + g E Qr, Ty - Ty [T, )T, Xyt
I<k—11,J

g !
E E BP.QTp, ** Tp, Ty Tqy ~* Tq, + [
s<k—1P,Q
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where f' € IdL(Ai), I={i,j01,...,0t}, J = {j1,.- 31}, P ={m,p1,...,p-} and Q = {q1,...,qs} with
t+l=n—-2,r+s=n—-1I<k—-1,s<k—-1i>j<ii<...<ip, 1 <...<j,m<p; <...<p,and
q < ...<gs.

By choosing z; = --- = z, = 1p we get @ = 0. Moreover, by induction on [, for fixed I and J, the
evaluation z; = a, v; =, = -+ =x;, = lp and x;, = by, forall 1 <h <[, givesay y=0.If welet 1 =a
and g = --- = x, = lp, then we get § = 0. Finally, by induction on s, for fixed P and @, the evaluation
T =G, Tp, =+ =2Tp, = 1p and x4, =by, for all 1 < h < s, gives Bp,g = 0.

Thus f = f' € Id*(A%) and 1d*(A3) = 1d*(A), as claimed. O

We are now in a position to prove that A5 and (A$)* generate minimal L-varieties.
Theorem 22. For all k > 2, A3 and (A5)* generate minimal L-varieties of polynomial growth.

Proof. Let A € varl'(A$) such that cZ(A) ~ gn*~*, for some ¢ > 0. By [31, Theorem 8] we assume
A= B1 DD Bm
where By,..., B, are finite dimensional L-algebras such that dimpg JéBTﬁi) < 1. This says that either B; =
F + J(B;) or B; 2 J(B;) is a nilpotent L-algebra, for all 1 < i < m. Since
cn(A) < e(B1) + -+ ¢/ (Bm),
there exists B; such that cZ(B;) ~ bn*~1, for some b > 0. Thus B; = F + J(B;) and by the previous Lemma,
B; ~7, Aj. Hence
varl(A5) = var®(B;) C var’(A) C var®(A%)

and so varf(A) = varl(A3).
Similarly one can prove the statement for (A%)*. O

6. CLASSIFYING SUBVARIETIES OF VAR (UTY)

In this section we present the main result about the L-variety generated by UTs, i.e., we will classify up
to Tr-equivalence all the L-algebras generating L-subvarieties of var® (UT¥).
To this end, we start with the following lemma concerning algebras with slow codimension growth.

Lemma 23. Let A= F + Jig + Ji1 € var’ (UTS) with Jig #0 (resp. A= F + Jo1 + J11 € var®(UTS) with
Jo1 £0). If J5; =0, then A ~p, A§ (resp. A ~1, (A5)*).
Proof. Since F* = J§; = 0 and J2, = 0, it is clear that 25 — x9a5 — [x1,29] € Id*(A), thus Id*(A35) C
Id*(A).

In order to prove the opposite inclusion, let f € Id* (A) be a multilinear L-polynomial of degree n. By
[30, Theorem 3], f can be written as

n
_— . . . . £
f* QT4 T, L5 +ﬂx2"'xnx1 + 9,
j=1

where g € Td¥(A45) and i1 < -+ < i,_;.
Suppose that there exists j # 1 such that a; # 0. Then by making the evaluation z; = b € Jig, for some

b#0,and z;, =---=wx;, , = 1lp, we get a; = 0, a contradiction. Now, if ay # 0, then by making the
evaluation 1 = -+ =z, = 1gp we get a3 = 0, a contradiction. Finally, if 8 # 0, then we let z; = b and
To =--- =1x, = lp getting 8 = 0, a contradiction.

Hence f = g € 1d%(45) and so A ~p, AS.

Similarly, if A = F + Jo1 + Ji1, we get A ~p, (A5)*. O

Lemma 24. Let A= F + Jy; € var(UTS). Then A ~r, Ng, for some k > 1.

Proof. Since A € var(UT5), then c(A) ~ gn*~! for some ¢ > 0 and k > 1.
If J§; = 0, then 2° = 0 on A and so [z1,x] € Id¥(A). This trivially implies that A is a commutative
algebra with trivial derivation, i.e., A ~p, Nf = F.
13



Let now Jf; # 0. Since A is a unitary algebra, we can consider the proper L-codimension sequence and
write

k—1
n
k) = 3 (1) k)
=0
with 72 (A) = 0 for all i > k. In particular v (A) = 0 and so [z, . .., z;] € Id¥(A). Hence Id*(N7) C 1d(A)
and by Theorem 19, since cZ(A) ~ gn*~1, it follows A ~7, Nf. O

We now prove some auxiliary lemmas very useful in the proof of the main theorem. We start by the
following that allows us to reduce our problem to the study of a variety generated by an L-algebra with
either J01 =0or JlO =0.

Lemma 25. Let A=F+J ¢ UCLTL(UTQE). Then A ~p, (F + Joo + Jio + J11) &) (F + Joo + Jo1 + J11)-

Proof. Let By = F+Joo+Ji0+J11 and By = F+Joo+Jo1+J11. Since F* = 0 and J;; C J;; for all i, j € {0,1},

it is clear that By and Bs are L-subalgebras of A. Then Id%(A4) C 1d*(B, @ B,) = Id*(B,) n1d%(By).
Moreover, since Jg1J19 = JigJor = 0, it turns out that also IdL(31 ® Bsy) C IdL(A) holds. Thus

A ~p, By ® By as claimed. ([l

Lemma 26. Let A = F+Joo+Jio+J11 € vark (UTS) with Jig # 0 (resp. A = F+Joo+Jo1+J11 € var” (UTS)
1. If J5; = 0, then A ~p, A, @ N (resp. A ~q, (AL)* ® N), for some k > 2 where N is a nilpotent
L-algebra.
2. If J, #0, then A ~p, A, @ N; ® N (resp. A ~r, (A7)* ® NS ® N), for some w > 2 and k > 2
where N is a nilpotent L-algebra.

Proof. Let A = F + Joo + Jio + J11 € var®(UT5) with Jyp # 0. The other case will follow with similar
arguments.

Suppose first J{; = 0 and let ¢ > 0 be the greatest integer such that JioJ¢, # 0. Notice that if ¢ = 0 then
JioJoo =0 and A = (F + Jig + J11) @ Joo as L-algebras. By Lemma 23 we get F + Jy19 + J11 ~71, A5, hence
A ~p, AS @ Joo, where Jy is a nilpotent L-algebra.

So let assume ¢ > 0, i.e., JigJ}y, # 0 (that is in particular J19Joo # 0) and JlOJéS'l =0.

Suppose that JOOJtJrl = 0. Then it is easy to check that z5xy - - - x5 € Id¥(A), thus IdL(A§+2) C 1d-(A).
Furthermore, since JigJ¢, # 0, there exist a € J1g and by, ..., b € Joo such that aby - - - b; # 0. Therefore, as
in the proof of Lemma 21, one can prove that A ~, Af, .

Let suppose now Jg,J; t“ # 0. Remark that, since J§, C Joo, €2 = £ and Lemma 15 holds, Joo is an L-ideal
of A, thus we can c0n51der A= A/J§,. As before, since JloJéérl = 0, it follows that xzjxa - - z¢yo € 1d* (A),
1d* (Af,,) C Id*(A) and so A ~p, At+2

Notice that Id"(A) C Id"(A) = 1d"(A3,,) and, since Jyo is an L-subalgebra of A, Id"(A) C Id"(Jy).
Therefore Id"(A) C 1d" (A, ® Joo).

Conversely, let f € Id"(As 42 ® Joo) be a multilinear L-polynomial of degree n. We can write f as

(6)
f=azy - xptfrg - anxit Z ZO‘I,JZ’M sy [z, gl g+ Z Zﬂp QTpy ** Tp, Tpyq, ** Ty,

I<t+11,J s<t+1 P,Q

E E ap [xmxj T+ E E Bp QI Ty acp/rxfn/xqfl---xq; + g,

U>t1",J' s>t P,Q’

where g € Id"(UT5) C Id*(A) and the indices of the variables are subjected to the conditions as in Lemma
7.
Remark that g and the last two summand of f are L-identities of A7, ,. Moreover, in Lemma 7 it was also
proved that the first four summand of f are linearly independent modulo 1d* (A7 ), hence o = = ay 5 =
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Bpq =0 forall I,.J, P and Q, and
(7) F=22 0 gy wylww wplwg o wy + >0 Y Berqry By By e T, + 0

U>tI,J s>t P
Since f € IdL(JOO), if we evaluate all the variables on Jyg, we get zero. Now, since JloJéa'l =Jj =
[J11, J11] = 0, every evaluation of f into elements of A gives the zero value, hence f € Id”(A). So Id* (Af @
Joo) C Id*(A) and A ~7, A, ® Joo follows.

Suppose now J5; # 0.

Let B=F + Jyg+ J1o and D = F + Jy1. It is clear that B and D are L-subalgebras of A. Moreover, for
the first part of the proof, B ~7, Af , ® N, for some ¢ > 0, and by Lemma 24, D ~7, N for some u > 2.
Thus Id"(A) C Id*(B @ D) = Id"(A45,, & NS & N).

Conversely, let f e Id"(As 1o ® N, @ N) be a multilinear polynomial of degree n and write f as in (6).
As in the previous case, since f € IdL(Afﬁ), we can reduce f as in (7). Notice that f € Id¥(B) n1d¥(D),
thus any evaluation of f in B or in D gives zero. Furthermore, since JjoJ¢ L= J5J10 = 0, we get that f
vanishes under any evaluation on elements of A.

Thus f € Id“(A) and 1d*(A) = 1d"(B @ D) = Id*(4;,, ® N: ® N). This immediately implies A ~7,
Af 5 ® N; ® N and we are done. O

By putting together the previous results, we get the following.

Lemma 27. Let A= F + J € var®(UT5) with Jigp # 0 and Jo1 # 0. Then either A ~r, A5 & (AS)*@® N or
A~ A5 @ (A2)* @ NS & N, for some k,r,u > 2, where N is a nilpotent L-algebra.

P?”OOf. By Lemma 25, A ~Ty, B1 D Bg Where B1 = F + JOO + JlO + J11 and Bg = F + JOO + J01 + J11.
Moreover, by the previous Lemma, By ~p, A5 @ N or By ~p, AL & NS @& N and By ~1, (A5)* @ N or
By ~p, (A2)* @ NE @ N, for some k,r,u > 2 and N a nilpotent L-algebra. It readily follows that

Arg, A0 (4 0N o

A, AL @ (A7) ® N & N,

as claimed. 0

We are now in a position to prove the main theorem of the paper.

Theorem 28. If A € var’(UT5) then A is Ty-equivalent to one of the following L-algebras: UTs, N,
Nf@&N, A& N, (A5)* @& N, AL N, &N, (A)*BEN, &N, A, (A5)*@® N, A7 & (A2)* & NS & N, where
N is a nilpotent algebra and k,r,u > 2, t > 1.

Proof. If A ~p, UTs there is nothing to prove, so let suppose that A generates a proper L-subvariety of

varl (UTs). Thus, by Theorem 3, cZ(A) is polynomially bounded and by [31, Theorem 8] we may assume
A:Bl@...@Bm’

where B, ..., B, are finite dimensional L-subalgebras of A such that dimg % <1, forall 1 <i<m.

If for all i, dimpg % = 0, then B; = J(B;) is a nilpotent L-algebra and A ~7, N where N =
B ® - @ Bn.

Thus suppose that there exists ¢ such that dimpg % = 1, that is B; = F + J(B;). Write J(B;)
Joo ® Ji0 @ Jo1 @ J11-

If Jig = Jo1 = 0, then by Lemma 24, A ~p, N; &N for some u; > 1, where N is a nilpotent L-algebra. If
either Jig # 0 or Jy; # 0, then by Lemmas 26 and 27, B; is T -equivalent to one of the following L-algebras:
A5, ® N, (43)° @ N, A, © Ng, © N, (45)° @ N7, © N, 45, © (45)° @ N or 45, & (45,)° © N, © N, for
some k;,1;, u; > 2.

Since A = B1®- - -®B,,, by taking into account the previous possibilities, we get the desired conclusion. [

As a direct consequence of the previous Theorem and Lemmas 19 and 22, we get the following corollary
that classifies, up to Tr-equivalence, all L-algebras generating minimal varieties of polynomial growth inside
L £
var”(UTs).
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Corollary 29. Let A € var®(UTS). Then A generates a minimal L-variety if and only if either A ~p, NE
or A ~q, A or A ~p, (AS)*, for someu > 1, k> 2.

7. CLASSIFYING SUBVARIETIES OF VAR (UT)

In this section we classify, up to Tr-equivalence, all the L-subvarieties of var®(UTy). As we remarked
before, since L acts trivially on UTs, this is equivalent to the classification of the algebras inside the variety
generated by UT5 in the ordinary case given in [22]. In what follows we present such results in the language
of L-algebras for convenience of the reader.

For k > 2, let Ay, A} and Nj be the algebras Aj, (A%)* and N; constructed in Section 3, respectively,
where L acts trivially on them.

Since 2° = 0 for all § € L, in this case we are dealing with ordinary identities. Thus we have the following
results characterizing the L-identities and the growth of the L-codimensions of the above algebras.

Theorem 30 ([4], Lemma 3).

1. IdL(AQ) = <[(E1,$‘2}LL‘3>TL and IdL(A;) = <.7J1[{L‘2,$3}>TL.
2. ck(Ay) = ck(AL) =n.
Theorem 31 ([22], Lemma 3.1). Let k > 3, then:
L. Id"(Ay) = ([z1, 223, z4], [21, 2o]w3 - - T )15
k—2
2. ck(Ay) = Z (7) (n—1-1)41=qn*, for some q > 0.
=0
Hence Id"(A}) = ([x1, xa)[x3, wa], T1 - Tp_o[vh_1, 211y, and ck(Af) = ck(Ay) = gn*~1.

Theorem 32 ([5], Theorem 3.4,). Let k > 3, then:

L Id"(Ny) = ([w1, wol[ws, za], [21, ... 2])7y;
2. cE(Np) =1+ 25;21 (?)(j — 1) ~ gqn*~1, for some q > 0.
Moreover, Ny ~r, F.

The following result classifies the subvarieties of varl (UT).

Theorem 33 ([22], Theorem 5.4). If A € var’(UTy) then A is Ty -equivalent to one of the following L-
algebras: UTy, N, Ny ® N, Ay &N, A*® N, A, &N, &N, A* &N, &N, Ay ® A* B N, A, ® A* & N, & N,
where N is a nilpotent algebra and k,r,u > 2.

As a consequence of the previous theorems, we can also get the classification of all L-algebras generating
minimal varieties.

Corollary 34. An L-algebra A € var®(UTy) generates a minimal variety of polynomial growth if and only
if either A ~p, N, or A ~rg, A or A~rg, A}, for someu>2, k> 2.
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