We introduce the concepts of extended equimeasurability and extended uniform quasiboundedness in groups of group-valued mappings endowed with a topology that generalizes the topology of convergence in measure. Quantitative characteristics modeled on these concepts allow us to estimate the Hausdorff measure of noncompactness in such a contest. Our results extend and encompass some generalizations of Frechet-Smulian and Ascoli-Arzela compactness criteria found in the literature.

Caponetti, D., Trombetta, A., Trombetta, G. (2022). Compactness in Groups of Group-Valued Mappings. MATHEMATICS, 10(21), 1-11 [10.3390/math10213973].

Compactness in Groups of Group-Valued Mappings

Caponetti, D
;
2022-10-26

Abstract

We introduce the concepts of extended equimeasurability and extended uniform quasiboundedness in groups of group-valued mappings endowed with a topology that generalizes the topology of convergence in measure. Quantitative characteristics modeled on these concepts allow us to estimate the Hausdorff measure of noncompactness in such a contest. Our results extend and encompass some generalizations of Frechet-Smulian and Ascoli-Arzela compactness criteria found in the literature.
26-ott-2022
Caponetti, D., Trombetta, A., Trombetta, G. (2022). Compactness in Groups of Group-Valued Mappings. MATHEMATICS, 10(21), 1-11 [10.3390/math10213973].
File in questo prodotto:
File Dimensione Formato  
mathematics-10-03973.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 311.07 kB
Formato Adobe PDF
311.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/583341
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact