To define the topology of driven systems, recent works have proposed synthetic dimensions as a way to uncover the underlying parameter space of topological invariants. Using time as a synthetic dimension, together with a momentum dimension, gives access to a synthetic two-dimensional (2D) Chern number. It is, however, still unclear how the synthetic 2D Chern number is related to the Chern number that is defined from a parametric variable that evolves with time. Here we show that in periodically driven systems in the adiabatic limit, the synthetic 2D Chern number is a multiple of the Chern number defined from the parametric variable. The synthetic 2D Chern number can thus be engineered via how the parametric variable evolves in its own space. We justify our claims by investigating Thouless pumping in two one-dimensional (1D) tight-binding models, a three-site chain model, and a two-1D-sliding-chains model. The present findings could be extended to higher dimensions and other periodically driven configurations.

Lu I.-T., Shin D., De Giovannini U., Hubener H., Zhang J., Latini S., et al. (2023). Time-based Chern number in periodically driven systems in the adiabatic limit. PHYSICAL REVIEW RESEARCH, 5(1) [10.1103/PhysRevResearch.5.013081].

Time-based Chern number in periodically driven systems in the adiabatic limit

De Giovannini U.;
2023-02-06

Abstract

To define the topology of driven systems, recent works have proposed synthetic dimensions as a way to uncover the underlying parameter space of topological invariants. Using time as a synthetic dimension, together with a momentum dimension, gives access to a synthetic two-dimensional (2D) Chern number. It is, however, still unclear how the synthetic 2D Chern number is related to the Chern number that is defined from a parametric variable that evolves with time. Here we show that in periodically driven systems in the adiabatic limit, the synthetic 2D Chern number is a multiple of the Chern number defined from the parametric variable. The synthetic 2D Chern number can thus be engineered via how the parametric variable evolves in its own space. We justify our claims by investigating Thouless pumping in two one-dimensional (1D) tight-binding models, a three-site chain model, and a two-1D-sliding-chains model. The present findings could be extended to higher dimensions and other periodically driven configurations.
6-feb-2023
Settore FIS/03 - Fisica Della Materia
Lu I.-T., Shin D., De Giovannini U., Hubener H., Zhang J., Latini S., et al. (2023). Time-based Chern number in periodically driven systems in the adiabatic limit. PHYSICAL REVIEW RESEARCH, 5(1) [10.1103/PhysRevResearch.5.013081].
File in questo prodotto:
File Dimensione Formato  
Time-based Chern number in periodically driven systems in the adiabatic limit.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/583213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact