We study, from a quite general point of view, a CQ*-algebra (X, A0) possessing a sufficient family of bounded positive tracial sesquilinear forms. Non-commutative L^2 -spaces are shown to constitute examples of a class of CQ*-algebras and any abstract CQ*-algebra (X, A0) possessing a sufficient family of bounded positive tracial sesquilinear forms can be represented as a direct sum of non-commutative L^2-spaces.

Triolo, S. (2022). CQ -algebras of measurable operators. MOROCCAN JOURNAL OF PURE AND APPLIED ANALYSIS, 8(2), 279-285 [10.2478/mjpaa-2022-0019].

CQ -algebras of measurable operators

Triolo, S.
Primo
2022-01-01

Abstract

We study, from a quite general point of view, a CQ*-algebra (X, A0) possessing a sufficient family of bounded positive tracial sesquilinear forms. Non-commutative L^2 -spaces are shown to constitute examples of a class of CQ*-algebras and any abstract CQ*-algebra (X, A0) possessing a sufficient family of bounded positive tracial sesquilinear forms can be represented as a direct sum of non-commutative L^2-spaces.
Settore MAT/05 - Analisi Matematica
https://sciendo.com/issue/MJPAA/8/2
Triolo, S. (2022). CQ -algebras of measurable operators. MOROCCAN JOURNAL OF PURE AND APPLIED ANALYSIS, 8(2), 279-285 [10.2478/mjpaa-2022-0019].
File in questo prodotto:
File Dimensione Formato  
10.2478_mjpaa-2022-0019.pdf

accesso aperto

Descrizione: pdf
Tipologia: Versione Editoriale
Dimensione 240.17 kB
Formato Adobe PDF
240.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/579122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact