Given a self-adjoint operator A in a Hilbert space H, we analyze its spectral behavior when it is expressed in terms of generalized eigenvectors. Using the formalism of Gel’fand distribution bases, we explore the conditions for the generalized eigenspaces to be one-dimensional, i.e., for A to have a simple spectrum.

Antoine, J., Trapani, C. (2022). Operators in Rigged Hilbert Spaces, Gel’fand Bases and Generalized Eigenvalues. MATHEMATICS, 11(1), 195 [10.3390/math11010195].

Operators in Rigged Hilbert Spaces, Gel’fand Bases and Generalized Eigenvalues

Trapani, Camillo
2022-01-01

Abstract

Given a self-adjoint operator A in a Hilbert space H, we analyze its spectral behavior when it is expressed in terms of generalized eigenvectors. Using the formalism of Gel’fand distribution bases, we explore the conditions for the generalized eigenspaces to be one-dimensional, i.e., for A to have a simple spectrum.
Settore MAT/05 - Analisi Matematica
Settore MAT/07 - Fisica Matematica
Antoine, J., Trapani, C. (2022). Operators in Rigged Hilbert Spaces, Gel’fand Bases and Generalized Eigenvalues. MATHEMATICS, 11(1), 195 [10.3390/math11010195].
File in questo prodotto:
File Dimensione Formato  
mathematics-11-00195.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 292.22 kB
Formato Adobe PDF
292.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/578230
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact