
Citation: Antoine, J.-P.; Trapani, C.

Operators in Rigged Hilbert Spaces,

Gel’fand Bases and Generalized

Eigenvalues. Mathematics 2023, 11,

195. https://doi.org/10.3390/

math11010195

Academic Editor: Manuel Gadella

Received: 29 November 2022

Revised: 21 December 2022

Accepted: 23 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Operators in Rigged Hilbert Spaces, Gel’fand Bases and
Generalized Eigenvalues
Jean-Pierre Antoine 1 and Camillo Trapani 2,*

1 Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain,
B-1348 Louvain-la-Neuve, Belgium

2 Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Via Archirafi n. 34,
I-90123 Palermo, Italy

* Correspondence: camillo.trapani@unipa.it
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1. Introduction and Preliminaries

Let H be a separable Hilbert space and D a dense domain in H, equipped with a
locally convex topology τ, finer than the norm topology. Let S be an essentially self-adjoint
operator in D which maps D[τ] into D[τ] continuously. S has a continuous extension Ŝ
given by the conjugate duality (the adjoint, in other words; i.e., Ŝ = S†) from the conjugate
dual space D× into itself. A generalized eigenvector of S, with eigenvalue λ ∈ C, is then an
eigenvector of Ŝ; that is, a conjugate linear functional Φλ ∈ D× such that:

〈Φλ|S f 〉 = λ〈Φλ| f 〉, ∀ f ∈ D,

which we rewrite as ŜΦλ = S†Φλ = λΦλ. The completeness of the set {Φλ; λ ∈ σ(Ŝ)} is
expressed through the Parseval identity:

‖ f ‖ =
(∫

σ(Ŝ)
|〈 f |Φλ〉|2dµ(λ)

)1/2
, ∀ f ∈ D,

where the positive measure µ may be, in general, both discrete and continuous.
In the present context, the Gel’fand–Maurin theorem [1] states that if D[τ] is a nuclear

domain in the Hilbert space, H and S is an essentially self-adjoint operator in D which
maps D[τ] into D[τ] continuously, then S admits a complete set of generalized eigenvectors.

Let A now be a self-adjoint operator with dense domain D(A) in a separable Hilbert
spaceH, which can be represented as

A f =
∞

∑
n=1

λn〈 f |en〉en, f ∈ D(A), (1)

with {en} an orthonormal basis of H. The notion of simple spectrum for the operator A
corresponds to the fact that each eigenvalue has multiplicity 1. Of course this definition
is of little use when the operator A has (also or only) a continuous spectrum. To cover
this case a different definition has been proposed which relies on the notion of generating
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vector [2] (Definition 5.1) or [3] (§69). Let us denote by E(·) the spectral measure associated
with the self-adjoint operator A.

Definition 1. A vector f ∈ H is called a generating vector or cyclic vector for A if the linear
span of vectors E(∆) f , ∆ ∈ B(R) (the σ-algebra of Borel sets of the real line), is dense in H. We
say that A has a simple spectrum if A has a generating vector.

This definition is motivated by the fact that for operators of the form (1) one can find
such a generating vector quite easily; in fact, the vector h0 = ∑∞

k=1
ek
2k achieves this. This

can also be expressed by stating that the von Neumann algebra A generated by the spectral
resolution E(∆), ∆ ∈ B(R) of A is maximal abelian; i.e., A′ = A. [Recall : An abelian
von Neumann algebra in separable Hilbert space is maximal abelian if and only if it has a
generating vector: [4] (Cor. 5.5.17; Cor. 7.2.16)].

In this paper, we will study the spectral behavior of self-adjoint operators A which are
represented in the form

A f =
∫
R

λ〈 f |ζλ〉ζλdλ,

where the ζλ’s are generalized eigenvectors. In particular, we determine the relationship
between the spectral family of A and the sesquilinear forms defined by the ζλ’s. Moreover,
we discuss the notion of simple spectrum in this situation; in other words, we expect to find
conditions for every subspace D×λ of generalized eigenvectors, corresponding to λ ∈ R, to
be one-dimensional. An interesting tool in this context is that of Gel’fand distribution basis,
introduced recently in [5] and defined in Section 3. In Section 4, we will see how this notion
may be utilized for characterizing the class of operators we consider.

Before going further, we fix some notations and give some preliminary results on
self-adjoint operators.

Let A be a self-adjoint operator with dense domain D(A). As usual we denote by
σp(A), σc(A), σr(A) the point spectrum (i.e., the set of true eigenvalues), the continuous
spectrum and the residual spectrum of an operator A, respectively. If A is self-adjoint then
σ(A) = σp(A) ∪ σc(A) and σr(A) = ∅.

If the spectrum of A contains some true eigenvalue λ0 , then the spectral measure of
the singleton {λ0} is given by the jump of the spectral function E(λ0)− E(λ−0 ) (remember
that the spectral family is strongly right continuous, i.e., lim

λ→λ+
0

E(λ) f = E(λ0) f , for every

λ0 ∈ R and every f ∈ H. This can be deduced from the following theorem which describes
the spectrum of a self-adjoint operator A in terms of its spectral family [3] (Ch.6, §68).

Proposition 1. Let {E(λ)} be the spectral family of the self-adjoint operator A and λ0 a real
number. Then,

(i) λ0 6∈ σ(A) if, and only if, E(λ) is constant in a neighborhood of λ0.
(ii) λ0 is an eigenvalue if, and only if, E(λ) is discontinuous in λ0.
(iii) λ0 ∈ σc(A) if, and only if, E(λ) is continuous in λ0, but non constant in every neighborhood

of λ0.

As a consequence, a real number λ0 belongs to the spectrum σ(A) of A if, and only if,
E(λ0 + ε)− E(λ0 − ε) 6= 0, for every ε > 0.

Remark 1. Since the Hilbert space H is separable, the point spectrum σp(A) of A consists at
most of a countable set of true eigenvalues. Therefore, the continuous spectrum σp(A) is a Borel
set and, for every f ∈ H, the restriction of the spectral measure 〈E(λ) f | f 〉 to σc(A) may be, for
certain f , absolutely continuous with respect to the Lebesgue measure (restricted to the same set).
Indeed, according to [6] (Ch.VII.2) one could consider a different decomposition of the spectrum
into pure point σpp(A), continuous σcont(A), absolutely continuous σac(A) and singular spectrum
σs(A) (these sets need not be disjoint). Corresponding to this, the Hilbert space H decomposes
asHpp ⊕Hac ⊕Hs whereHpp,Hac,Hs are, respectively, the pure point, absolutely continuous
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and singular parts of H obtained via the corresponding Lebesgue decomposition of the measures
generated by the functions 〈E(λ) f | f 〉, f ∈ H.

We will not go into further details on the spectral analysis of self-adjoint operators, for which
we refer to [2,3,6]; for a discussion of this matter in the framework of RHS’s, see also [7].

2. Rigged Hilbert Spaces and Quantum Mechanics
2.1. Rigged Hilbert Spaces

Let, as before, D be a dense subspace of H. A locally convex topology τ on D finer
than the topology induced by the Hilbert norm defines, in standard fashion, a rigged Hilbert
space (RHS, for short) D[τ] ↪→ H ↪→ D×[τ×], (2)

where D× is the vector space of all continuous conjugate linear functionals on D[τ],
i.e., the conjugate dual of D[τ], endowed with the strong dual topology τ× = β(D×,D),
which can be defined by the seminorms

qM(F) = sup
g∈M

|〈F|g〉|, F ∈ D×, (3)

whereM is a bounded subset of D[τ].
Since the Hilbert space H can be identified with a subspace of D×[τ×], we will

systematically read (2) as a chain of topological inclusions: D[τ] ⊂ H ⊂ D×[τ×]. These
identifications imply that the sesquilinear form B(·, ·) which puts D and D× in duality is
an extension of the inner product ofH; i.e., B(ξ, η) = 〈ξ|η〉, for every ξ, η ∈ D (to simplify
notations we adopt the symbol 〈·|·〉 for both of them) and also that the embedding map
ID,D× : D → D× can be taken to act on D as ID,D× f = f for every f ∈ D.

Let now D[τ] ⊂ H ⊂ D×[τ×] be a rigged Hilbert space, and let L(D,D×) denote
the vector space of all continuous linear maps from D[τ] into D×[τ×]. If D[τ] is barreled
(e.g., reflexive), an involution X 7→ X† can be introduced in L(D,D×) by the equality〈

X†η|ξ
〉
= 〈Xξ|η〉, ∀ξ, η ∈ D.

Hence, in this case, L(D,D×) is a †-invariant vector space.
If D[τ] is a smooth space (e.g., Fréchet and reflexive), then L(D,D×) is a quasi

*-algebra over L†(D) [8] (Definition 2.1.9).
We also denote by L(D) the algebra of all continuous linear operators Y : D[τ]→ D[τ]

and by L(D×) the algebra of all continuous linear operators Z : D×[τ×] → D×[τ×]. If
D[τ] is reflexive, for every Y ∈ L(D) there exists a unique operator Y× ∈ L(D×), the
adjoint of Y, such that

〈Φ|Yg〉 =
〈
Y×Φ|g

〉
, ∀Φ ∈ D×, g ∈ D.

In a similar way, an operator Z ∈ L(D×) has an adjoint Z× ∈ L(D) such that (Z×)× = Z.
A typical example of RHS can be constructed starting from a self-adjoint operator

A with domain D(A) in the Hilbert space H. Let D :=
⋂

n∈N D(An). Then D is a dense
invariant core fo A and AD ⊂ D. Typically, one endows D with the graph topology τ
defined by the set of seminorms f ∈ D 7→ ‖An f ‖, n = 0, 1, . . .. The space D[τ] is a Fréchet
reflexive space. We will call this RHS the canonical RHS associated with A (Section 5.4 in [9]).

2.2. Rigged Hilbert Spaces in Quantum Mechanics

For convenience, we follow the recent review by Ref. [10]. The first rigorous formu-
lation of quantum mechanics was that of von Neumann, solely based on Hilbert space
concepts. However, most physicists adopted the simpler and more intuitive bra-ket formal-
ism of Dirac and standard textbooks still do the same. Of course, this is not satisfactory from
a mathematical perspective. A solution (advocated by Bargmann) is to work in an RHS.
This approach was proposed, independently, by one of this paper’s authors (JPA) [11–13],
Roberts [14,15] and Bohm [16]. See also Bohm-Gadella [17]. One crucial point is how to
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choose the left-hand space D[τ]. The elegant solution of Roberts is to start from a family of
so-called labeled observables, realized by essentially self-adjoint operators having a common
dense invariant domain D and a clear physical significance (position, momentum, energy,
angular momentum, etc.). In fact, this idea is older, but not formalized; for instance, Wigner
kept asking “What does 1/r mean for a harmonic oscillator ?” The key point is that the
Gel’fand–Maurin theorem discussed above allows us to combine Dirac’s formalism and
mathematical rigor. Indeed, a few textbooks have adopted this point of view. In fact, the
RHS formulation of quantum mechanics has become an active research theme, focusing on
various aspects, such as scattering theory [7] or change of representation, a cornerstone of
Dirac’s approach [18]. An early review may be found in [19]. Indeed, several versions of
axiomatic quantum field theory are advantageously presented from an RHS approach [20].
In addition, the RHS approach allows an interpretation of the extreme spaces: elements of
D[t] may be taken as physically realizable states, whereas D×[t] contains generalized states
associated with measurement operations. This is consistent with the dual interpretation of
symmetries, namely active vs. passive point of views.

Returning back to the simple case on nonrelativistic QM, the natural choice of RHS is
Schwartz’s triplet

S(R3) ⊂ L2(R3) ⊂ S×(R3),

where S(R3) is the space of smooth fast decreasing functions and S×(R3) is the space of
tempered distributions. Then, indeed S(R3) is obtained by choosing as labeled observables
the operators q (position) and p (momentum) or a suitable polynomial of them, for instance
the Hamiltonian of the harmonic oscillator H = 1

2 (p
2 + q2).

3. Gel’fand Distribution Bases

Let (X, µ) be a measure space with µ a σ-finite positive measure. x ∈ X 7→ ωx ∈ D×
a weakly measurable map; i.e., we suppose that, for every f ∈ D, the complex valued
function x 7→ 〈 f |ωx〉 is µ-measurable. Since the form which puts D and D× in conjugate
duality is an extension of the inner product ofH, we write 〈 f |ωx〉 for 〈ωx| f 〉, f ∈ D.

We will say that

(i) ω is total if, f ∈ D and 〈 f |ωx〉 = 0 for almost every x ∈ X implies f = 0;
(ii) ω is µ-independent if the unique measurable function ξ on R such that

∫
X ξ(x)〈g|ωx〉dµ = 0,

for every g ∈ D, is ξ(x) = 0 µ-a.e.

We recall the following definitions and facts from [5].

Definition 2. Let D ⊂ H ⊂ D× be a rigged Hilbert space and ζ : x ∈ X 7→ ζx ∈ D× be a
weakly measurable map from D into D×. We say that ζ is a Gel’fand distribution basis if ζ is
µ-independent and satisfies the Parseval identity: i.e.,∫

X
|〈 f |ζx〉|2dµ = ‖ f ‖2, f ∈ D. (4)

By (4), it follows that if g ∈ H and {gn} is a sequence of elements of D, norm
converging to g, then the sequence {ηn}, where ηn(x) = 〈gn|ζx〉, is convergent in L2(X, µ).
Put η = limn→∞ ηn. The function η ∈ L2(X, µ) depends linearly on g, for each x ∈ X. Thus,
a linear functional ζ̌x onH can be defined by〈

g|ζ̌x
〉
= lim

n→∞
〈gn|ζx〉, g ∈ H; gn → g. (5)

For each x ∈ X, ζ̌x extends ζx, but ζ̌x need not be continuous, as a functional onH.
Moreover, in this case, the sesquilinear form Ω associated with the quadratic form (4);

i.e.,
Ω( f , g) =

∫
X
〈 f |ζx〉〈ζx|g〉dµ, f , g ∈ D,
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is well defined on D × D, it is bounded with respect to ‖ · ‖ and possesses a bounded
extension Ω̂ toH.

The following result describes the behavior of Gel’fand distribution bases.

Corollary 1. Let ζ be a Gel’fand distribution basis. The following statements hold.

(i) For every f ∈ H, there exists a unique function ξ f ∈ L2(X, µ) such that

f =
∫

X
ξ f (x)ζxdµ.

In particular, if f ∈ D, then ξ f (x) = 〈 f |ζx〉 µ-a.e.
(ii) For every fixed x ∈ X, the map f ∈ H 7→ ξ f (x) ∈ C defines as in (5) a linear functional ζ̌x

onH and
f =

∫
X

〈
f |ζ̌x

〉
ζxdµ, ∀ f ∈ H.

As proved in [5] (Proposition 3.15) the synthesis operator Tζ defined by

Tzg =
∫

X
g(x)ζxdµ, g ∈ L2(X, µ)

is an isometry of L2(X, µ) onto H. Its adjoint T×ζ : H → L2(X, µ) associates to each vector
f ∈ H the function ξ f ∈ L2(X, µ) whose existence is guaranteed by (i) of the previous corollary.

4. Operators Constructed from Gel’fand Distribution Bases
4.1. Construction of the Operators

Let D ⊂ H ⊂ D× be a rigged Hilbert space. We suppose that the space D is reflexive
under its topology τ. In this section, we consider the measure space (R, dλ), where dλ
denotes the Lebesgue measure. Let ζ : R→ D× be a Gel’fand distribution basis.

Consider the following operator A (see also, [5] (Section 4)):

D(A) =

{
f ∈ H :

∫
R

λ2|
〈

f |ζ̌λ

〉
|2dλ < ∞

}
, (6)

A f =
∫
R

λ
〈

f |ζ̌λ

〉
ζλdλ, f ∈ D(A), (7)

where the last equality is intended as a conjugate linear functional on D:

ΦA, f (g) := 〈A f |g〉 =
∫
R

λ
〈

f |ζ̌λ

〉
〈ζλ|g〉dλ, g ∈ D.

It is easily seen that ΦA, f is bounded; thus by a limiting procedure we can extend it to
H, where we get

Φ̂A, f (g) := 〈A f |g〉 =
∫
R

λ
〈

f |ζ̌λ

〉〈
ζ̌λ|g

〉
dλ, g ∈ H.

Then, we have

Lemma 1. (A, D(A)) is a self-adjoint operator inH.

Proof. Let h ∈ D(A∗); then there exists h∗ ∈ H such that.

〈A f |h〉 =
∫
R

λ
〈

f |ζ̌λ

〉〈
ζ̌λ|h

〉
dλ = 〈 f |h∗〉,

if, and only if, h∗ =
∫
R λ
〈

h|ζ̌λ

〉
ζλdλ and

∫
R λ2|

〈
h|ζ̌λ

〉
|2dλ < ∞; i.e., if, and only if,

h ∈ D(A) and A∗h = Ah.

In a similar way, if u is a Borel function on R, we define
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D(Au) =

{
f ∈ H :

∫
R
|u(λ)|2

∣∣〈 f |ζ̌λ

〉∣∣2dλ < ∞
}

, (8)

Au f =
∫
R

u(λ)
〈

f |ζ̌λ

〉
ζλdλ, f ∈ D(Au). (9)

If D(Au) is dense, then A∗u is the operator corresponding to u, the conjugate of u.

Lemma 2. The operator Au is bounded if, and only if, u ∈ L∞(X, µ).

Proof. The sufficiency is immediate. The necessity follows from the fact that the analysis
operator is also invertible; thus uh ∈ L2(X, µ) for every h ∈ L2(X, µ). This, in turn, implies
that u ∈ L∞(X, µ).

If u is bounded, then D(Au) = H and Au is bounded.
Let us suppose that f ∈ D implies A f ∈ D. Then, it makes sense to compute

〈
A f |ζµ

〉
,

which is obviously given by〈
A f |ζµ

〉
=

〈∫
R

λ〈 f |ζλ〉ζλdλ|ζµ

〉
.

On the other hand 〈
A f |ζµ

〉
=
〈

f |Âζµ

〉
= µ

〈
f |ζµ

〉
,

by definition of a generalized eigenvector. Thus, we have〈∫
R

λ〈 f |ζλ〉ζλdλ
∣∣∣ζµ

〉
= µ

〈
f |ζµ

〉
, ∀ f ∈ D.

Remark 2. However, we cannot write the lhs as
∫
R λ〈 f |ζλ〉

〈
ζλ|ζµ

〉
dλ since this is undefined,

in general.

Since A is self-adjoint, its spectrum σ(A) is real. Using (8) and (9), we find that for
every z ∈ C \R, the resolvent operator (A− zI)−1 is given by

(A− zI)−1 f =
∫
R

1
λ− z

〈
f |ζ̌λ

〉
ζλdλ. (10)

Remark 3. By Lemma 1, the operator A is self-adjoint; then it has a spectral decomposition

A f =
∫
R

λdE(λ) f , ∀ f ∈ D(A).

The previous equality and (7) provide strong clues to believe that there is a sort of relationship of
absolute continuity of the measure defined by 〈E(λ) f | f 〉, f ∈ H and the Lebesgue measure. This is
not too far from truth; however, a more precise analysis must be undertaken.

We begin with proving that, as expected, the operator A defined in (7) has only a
continuous spectrum.

Lemma 3. Let A be the operator defined in (7). Then, for every µ ∈ R the operator A− µI is
injective and (A− µI)D(A) is a proper dense subspace ofH; i.e., µ ∈ σc(A).

Proof. Let f ∈ D(A) be a solution of A f − µ f =0. Then

〈A f − µ f | f 〉 =
∫
R
(λ− µ)|

〈
f |ζ̌λ

〉
|2dλ = 0.

Since λ varies in R one must have
〈

f |ζ̌λ

〉
= 0 a.e.; this shows that f = 0. Moreover, the

residual spectrum of A is empty (because A is selfadjoint). Then necessarily (A− µI)D(A)
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is dense inH. The inverse of A− µI is given by (10) with z = µ and by Lemma 2 it follows
that (A− µI)−1 is unbounded if µ ∈ R.

Theorem 1. Let D ⊂ H ⊂ D× be the canonical RHS associated with a self-adjoint operator A.
For every f , g ∈ D the function λ ∈ R 7→ 〈E(λ) f |g〉 is almost everywhere differentiable and there
exists a positive operator Yλ ∈ L(D,D×) such that

d
dλ
〈E(λ) f |g〉 = 〈Yλ f |g〉, ∀ f , g ∈ D.

Proof. Let f ∈ D. The function λ ∈ R 7→ 〈E(λ) f | f 〉 is nonnegative and increasing. Then,
it is differentiable almost everywhere, by Lebesgue’s differentiation theorem; the derivative,
of course, depends on f .

Using the polarization identity, we conclude that the function λ 7→ 〈E(λ) f |g〉, f , g ∈ D,
which is bounded variation, is also differentiable a.e. Put

u f ,g(λ) =
d

dλ
〈E(λ) f |g〉.

It can be easily seen that u f ,g(λ) is a sesquilinear form in f , g. Now, from the usual spectral
calculus one deduces that, for every λ ∈ R, E(λ) f ∈ D(An), for each f ∈ H and the
following inequality holds.

‖AnE(λ) f ‖ = ‖E(λ)An f ‖ ≤ ‖An f ‖, ∀n ∈ N, λ ∈ R, f ∈ D.

This implies that for each λ ∈ R, E(λ) (which maps D into D ) is continuous from D[τA]
into itself. This, in turn implies that, for almost every λ ∈ R, u f ,g(λ) depends continuously
on f ∈ D. By symmetry, it is separately continuous; however, since D[τA] is a Fréchet
space, it is jointly continuous; i.e., for almost every λ ∈ R there exists n ∈ N and γλ > 0
such that

|u f ,g(λ)| =
∣∣∣∣ d
dλ
〈E(λ) f |g〉

∣∣∣∣ ≤ γλ‖An f ‖ ‖Ang‖, ∀ f , g ∈ D.

In this case [8] (Ch.10), there exists an operator Yλ ∈ L(D,D×) such that

u f ,g(λ) = 〈Yλ f |g〉, ∀ f , g ∈ D.

On the basis of the previous considerations we expect that in the case of the operator
A defined by a Gel’fand distribution basis, we should have

d
dλ
〈E(λ) f |g〉 = 〈 f |ζλ〉〈ζλ|g〉, f , g ∈ D.

Let us first examine some simple yet significant examples.

Example 1. In the RHS S(R) ⊂ L2(R) ⊂ S×(R), let us consider the operator Q of multiplication
by x, i.e.,

(Q f )(x) = x f (x); f ∈ S(R).

This operator is the restriction to S(R) of the multiplication operator by x defined on

D(Q) = { f ∈ L2(R) : x f (x) ∈ L2(R)},
(Q f )(x) = x f (x), f ∈ D(Q).

This operator has a Gel’fand basis of generalized eigenvectors given by the distributions δλ, the
Dirac delta centered at λ. Indeed,

〈Qφ|δλ〉〈xφ(x)|δλ〉 = λφ(λ) = λ〈φ|δλ〉, ∀φ ∈ S(R),
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which can be read as Qδλ = λδλ.
The spectral resolution of Q, on the other hand, can be written as

〈Qφ|ψ〉 =
∫
R

λd〈E(λ)φ|ψ〉, ∀φ, ψ ∈ S(R),

where E(λ)φ = χλφ, with χλ the characteristic function of (−∞, λ].
It is clear that we can also write

〈Qφ|ψ〉 =
∫
R

λ〈φ|δλ〉〈δλ|ψ〉dλ.

We have

d
dλ
〈χλφ|ψ〉 = d

dλ

∫
R

χλ(x)φ(x)ψ(x)dx

=
d

dλ

(∫ λ

−∞
φ(x)ψ(x)dx

)
= φ(λ)ψ(λ) = 〈φ|δλ〉〈δλ|ψ〉.

Example 2. In the RHS S(R) ⊂ L2(R) ⊂ S×(R) let us consider the momentum operator P, i.e.,

(P f )(x) = −i
d

dx
f (x), f ∈ S(R).

This operator is the restriction to S(R) of the momentum operator defined on D(P) = W1,2(R),
the familiar Sobolev space.

This operator has a Gel’fand basis of generalized eigenvectors given by the regular distributions
ζλ(x) = 1√

2π
eiλx. The use of Fourier transform on the computations of Example 1 shows that

d
dλ
〈E(λ)φ|ψ〉 = φ̂(λ)ψ̂(λ), ∀φ, ψ ∈ S(R),

where ĝ denotes the Fourier transform of g.

The previous example motivates the conjecture that if A is a self-adjoint operator given
in terms of some Gel’fand basis ζ as in (7) and E(λ) is the spectral family of A, then the
spectral family {E(µ); µ ∈ R} of A should be given by

〈E(µ) f |g〉 =
∫ µ

−∞
〈 f |ζλ〉〈ζλ|g〉dλ, f , g ∈ D.

In order to study this problem, we begin with considering for µ ∈ R the sesquilinear
form

Θµ( f , g) =
∫
R

χµ(λ)〈 f |ζλ〉〈ζλ|g〉dλ,

where χµ is the characteristic function of (−∞, µ]. Then Θ is a bounded sesquilinear form
on D ×D, with respect to the norm ofH and hence there exists a bounded operator B(µ)
such that Θµ( f , g) = 〈B(µ) f |g〉. A Gel’fand distribution basis ζ is characterized by the fact
that the synthesis operator Tζ : u ∈ L2(R) 7→

∫
R u(λ)ζλdλ takes values in H and it is an

isometry of L2(R) onto H [5] (Proposition 3.15); thus its inverse (or adjoint) T×ζ (i.e., the
analysis operator) is also isometric. Let us denote by M(µ) the multiplication operator
by χµ (the characteristic function of (−∞, µ]), then Θµ is represented by the operator
Tζ M(µ)T×ζ which is a projection operator that we denote by F(µ).

Then the equality

〈F(µ f )|g〉 =
∫ µ

−∞
〈 f |ζλ〉〈ζλ|g〉dλ

implies that
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〈A f |g〉 =
∫
R

λ〈 f |ζλ〉〈ζλ|g〉dλ =
∫
R

λd〈F(λ) f |g〉, ∀ f , g ∈ D.

The uniqueness of the spectral measure implies that E(λ) = F(λ), for almost every λ.
These considerations prove the following theorem.

Theorem 2. Let A be the self-adjoint operator defined by a Gel’fand distribution basis ζ, in the
sense that

A f =
∫
R

λ
〈

f |ζ̌λ

〉
ζλdλ, f ∈ D(A).

Then, the spectral measure E(·) of A is absolutely continuous with respect to the Lebesgue measure
and 〈

f |ζ̌λ

〉
〈ζλ|g〉 =

d
dλ
〈E(λ) f |g〉, ∀ f , g ∈ D.

Remark 4. Replacing ζλ with ζ̌λ, the previous equality extends to f , g ∈ H.

Remark 5. As a consequence of Theorem 2, in the case under consideration, we conclude that
the operators defined in (8), (9) satisfy the usual rules of the functional calculus for unbounded
self-adjoint operators. In particular, if u, v are Borel functions on R, one has

Au+v ⊃ Au + Av, Auv ⊃ Au Av.

4.2. Simple Spectrum

In both examples considered above, every generalized eigenvalue has multiplicity 1;
i.e., the subspace of generalized eigenvector corresponding to every generalized eigenvalue
λ has dimension 1. In finite-dimensional spaces, this is exactly the definition of the operator
having simple spectrum.

Let us now discuss in general terms how the notion of simple spectrum can be handled
in this context.

Given a self-adjoint operator A, we consider the canonical rigged Hilbert space associated
with A. We denote by D×λ ⊂ D

× the subspace consisting of all generalized eigenvectors
corresponding to the generalized eigenvalue λ. For all f ∈ D, one can define a linear
functional f̃λ on D×λ by f̃λ(Φλ) := 〈Φλ| f 〉 for all Φλ ∈ D×λ . On the other hand, it is easily
seen that every continuous functional on D×λ has the form f̃λ for some f ∈ D. We denote by
D××λ the space of all these functionals. The correspondence D → D××λ defined by f 7→ f̃λ

is called the spectral decomposition of the element f corresponding to A. If f̃λ ≡ 0 for every
generalized eigenvalue λ, implies f = 0 then A is sometimes said to have a complete system of
generalized eigenvectors. However, this condition is not sufficient to guarantee that generalized
eigenvectors are a Gelf’and distribution basis and will not be adopted for this reason.

As noted before, in finite dimensional spaces, an operator is said to have a simple
spectrum if each eigenvalue has multiplicity 1. In the infinite dimensional case, this
notion is useless due to the possible presence of a continuous part of the spectrum. If
A is a bounded self-adjoint operator in H, then one says that ξ is generating if the set
{p(A)ξ0; p polynomial} is dense in H. As is known, this is equivalent to say that the
von Neumann algebra A generated by A is maximal abelian (i.e., it coincides with its
commutant A′). These facts, in turn, are equivalent to A being unitarily equivalent to a
multiplication operator: Assume in fact that A has a generating vector ξ ∈ H and put
µξ(∆) = 〈E(∆)ξ|ξ〉, ∆ ∈ B(R), the σ-algebra of Borel sets on the real line. There then exists
a unitary operator U : H → L2(σ(A), dµξ) with

(UAU−1 f )(λ) = λ f (λ).

A similar result can be obtained if A is self-adjoint but not necessarily bounded [2]
(Section 5.4). In this case, we prefer to call cyclic a vector ξ0 which lies in the space
D∞(A) =

⋂∞
n=1 D(An) and such that the set {Anξ0; n ∈ N} is total in H (see also [18]
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(Section 3.5); in [3] (Sect. 69) and [2] (Section 5.4) the notion of generating vector is always
considered in the context of the von Neumann algebra that the operator generates).

For our purposes, it seems more convenient to strengthen the definition as follows.

Definition 3. We say that a vector ξ0 ∈ D is strongly cyclic (for A) if the set {Anξ0; n ∈ N} is
total in D[τ] or equivalently if {p(A)ξ0; p polynomial} is dense in D[τ].

It is easily seen that a strongly cyclic vector is cyclic. By [2] (Proposition 5.20), a
generating vector exists if and only if a cyclic vector for A exists.

Theorem 3. Let A be a self-adjoint operator and D ⊂ H ⊂ D× be a RHS such that AD ⊂ D. If
there exists a strongly cyclic vector for A, then every subspace D×λ is one-dimensional.

Proof. Suppose that D×λ is not one-dimensional and let Φ1, Φ2 be linearly independent
functionals in D×λ . Then there exists a nonzero vector f ∈ D such that 〈Φ1| f 〉 = 1 and
〈Φ2| f 〉 = 0. Then if ξ is a cyclic vector for A, there exists a sequence {pn} of polynomials
such that lim

n→∞
pn(A)ξ = f . Then,

lim
n→∞
〈Φ1|pn(A)ξ〉 = 1, lim

n→∞
〈Φ2|pn(A)ξ〉 = 0;

this implies that

lim
n→∞

pn(λ)〈Φ1|ξ〉 = 1, lim
n→∞

pn(λ)〈Φ2|ξ〉 = 0.

The first equality above implies that lim
n→∞

pn(λ) 6= 0; thus, the second one entails that

〈Φ2|ξ〉 = 0. However, since ξ is strongly cyclyc this, in turn, implies that Φ2 is identically 0
on D. A contradiction.

We conjecture that the converse implication holds true, but we could not prove it.

5. Conclusions

Clearly, operators defined by a Gel’fand distribution basis form an interesting class
that deserves further study. It could also be extended to more general operators, i.e., quasi-
hermitian operators B = SAS−1 for some reasonable S. This would correspond to the
fact that B is the operator defined by a Riesz distribution basis as defined in [5] (Definition
3.19). Roughly speaking, a Riesz distribution basis is in fact obtained from a Gel’fand
basis through the action of a continuous operator S having a bounded inverse. We expect
that a study of operators defined by a Riesz distribution basis should produce results
similar to those obtained in [21,22] for operators defined by (usual) Riesz bases and their
generalizations. This sets some goals and directions of research, which we leave for a
future work.
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