We use a variational approach to study existence and regularity of solutions for a Neumannp-Laplacian problem with a reaction term on metric spaces equipped with a doubling measure and supporting a Poincare inequality. Trace theorems for functions with bounded variation are applied in the definition of the variational functional and minimizers are shown to satisfy De Giorgi type conditions.

Antonella Nastasi (2020). Neumann p-Laplacian problems with a reaction term on metric spaces. RICERCHE DI MATEMATICA, 71(2), 415-430 [10.1007/s11587-020-00532-6].

Neumann p-Laplacian problems with a reaction term on metric spaces

Antonella Nastasi
Primo
2020-01-01

Abstract

We use a variational approach to study existence and regularity of solutions for a Neumannp-Laplacian problem with a reaction term on metric spaces equipped with a doubling measure and supporting a Poincare inequality. Trace theorems for functions with bounded variation are applied in the definition of the variational functional and minimizers are shown to satisfy De Giorgi type conditions.
Antonella Nastasi (2020). Neumann p-Laplacian problems with a reaction term on metric spaces. RICERCHE DI MATEMATICA, 71(2), 415-430 [10.1007/s11587-020-00532-6].
File in questo prodotto:
File Dimensione Formato  
s11587-020-00532-6_nastasi.pdf

Solo gestori archvio

Tipologia: Versione Editoriale
Dimensione 297.08 kB
Formato Adobe PDF
297.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/576736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact