We use a variational approach to study existence and regularity of solutions for a Neumannp-Laplacian problem with a reaction term on metric spaces equipped with a doubling measure and supporting a Poincare inequality. Trace theorems for functions with bounded variation are applied in the definition of the variational functional and minimizers are shown to satisfy De Giorgi type conditions.
Antonella Nastasi (2022). Neumann p-Laplacian problems with a reaction term on metric spaces. RICERCHE DI MATEMATICA, 71(2), 415-430 [10.1007/s11587-020-00532-6].
Neumann p-Laplacian problems with a reaction term on metric spaces
Antonella Nastasi
Primo
2022-11-01
Abstract
We use a variational approach to study existence and regularity of solutions for a Neumannp-Laplacian problem with a reaction term on metric spaces equipped with a doubling measure and supporting a Poincare inequality. Trace theorems for functions with bounded variation are applied in the definition of the variational functional and minimizers are shown to satisfy De Giorgi type conditions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s11587-020-00532-6_nastasi.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
297.08 kB
Formato
Adobe PDF
|
297.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
SOLUTIONS_FOR_NEUMANN_p-LAPLACIAN_PROBLEMS_ON_METRIC_SPACES.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
297.02 kB
Formato
Adobe PDF
|
297.02 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.