In 1970, McIntosh introduced the so-called 0-closed sesquilinear forms and proved a corresponding representation theorem. In this paper, we give a simple equivalent formulation of 0-closed sesquilinear forms. The main underlying idea is to consider minimal pairs of non-negative dominating forms.

Corso, R. (2022). An equivalent formulation of 0-closed sesquilinear forms. ARCHIV DER MATHEMATIK [10.1007/s00013-022-01790-6].

An equivalent formulation of 0-closed sesquilinear forms

Corso, R
2022-01-01

Abstract

In 1970, McIntosh introduced the so-called 0-closed sesquilinear forms and proved a corresponding representation theorem. In this paper, we give a simple equivalent formulation of 0-closed sesquilinear forms. The main underlying idea is to consider minimal pairs of non-negative dominating forms.
2022
Corso, R. (2022). An equivalent formulation of 0-closed sesquilinear forms. ARCHIV DER MATHEMATIK [10.1007/s00013-022-01790-6].
File in questo prodotto:
File Dimensione Formato  
An equivalent formulation of 0-closed sesquilinear forms.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 309.62 kB
Formato Adobe PDF
309.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/574666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact