In 1970, McIntosh introduced the so-called 0-closed sesquilinear forms and proved a corresponding representation theorem. In this paper, we give a simple equivalent formulation of 0-closed sesquilinear forms. The main underlying idea is to consider minimal pairs of non-negative dominating forms.
Corso, R. (2023). An equivalent formulation of 0-closed sesquilinear forms. ARCHIV DER MATHEMATIK, 120, 59-67 [10.1007/s00013-022-01790-6].
An equivalent formulation of 0-closed sesquilinear forms
Corso, R
2023-01-01
Abstract
In 1970, McIntosh introduced the so-called 0-closed sesquilinear forms and proved a corresponding representation theorem. In this paper, we give a simple equivalent formulation of 0-closed sesquilinear forms. The main underlying idea is to consider minimal pairs of non-negative dominating forms.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s00013-022-01790-6.pdf
accesso aperto
Tipologia:
Versione Editoriale
Dimensione
300 kB
Formato
Adobe PDF
|
300 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.