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An equivalent formulation of 0-closed sesquilinear forms
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Abstract. In 1970, McIntosh introduced the so-called 0-closed sesquilinear
forms and proved a corresponding representation theorem. In this paper,
we give a simple equivalent formulation of 0-closed sesquilinear forms.
The main underlying idea is to consider minimal pairs of non-negative
dominating forms.
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1. Introduction. Let H be a Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖. Let D1,D2 be two subspaces of H. A sesquilinear form (or, more simply,
a form) t on D1 × D2 is a map t : D1 × D2 → C which is linear in the first
component and anti-linear in the second one. If D1 = D2 = D, we write
t[f ] := t(f, f) for f ∈ D. A sesquilinear form s on D × D is said to be non-
negative if s[f ] ≥ 0 for every f ∈ D; strictly-positive if there exists c > 0 such
that s[f ] ≥ c‖f‖2 for every f ∈ D. If s is non-negative, we denote by ker(s)
the subspace {f ∈ D : s[f ] = 0}.

Given a sesquilinear form t on D1×D2, with D2 is dense in H, it is possible
to construct an operator T with domain

D(T ) = {f ∈ D1 : ∃h ∈ H, t(f, g) = 〈h, g〉,∀g ∈ D2} (1.1)

and defined as Tf = h, for all f ∈ D(T ), where h is the element in (1.1).
The operator T is called associated to t and then the following representation
holds

t(f, g) = 〈Tf, g〉, ∀f ∈ D(T ), g ∈ D2. (1.2)

In the last decades, several theorems about the representation (1.2) have
been given [1–5,9,11,13–17]. The topic of the representation is connected to
the Lebesgue decomposition (see [6–8,12,19]) as motivated in [8].
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One of the classical representation theorems has been given for the so-
called closed sesquilinear forms [14, Ch. VI]. We recall that a non-negative1

sesquilinear form s on D×D is closed if, for any sequence of vectors {fn} of H
such that fn → f and s[fn − fm] → 0, one has f ∈ D and s[fn − f ] → 0. The
representation theorem for closed sesquilinear forms is useful, for instance, to
define the Friedrichs extension of densely defined positive operators [14, Ch.
VI] and a special sum of two operators [18].

In this paper, we specifically focus on 0-closed forms introduced and treated
in [16,17] by McIntosh in 1970. Hence, first of all, we recall the definition. Let
D1 and D2 be dense subspaces of H. A sesquilinear form t on D1 ×D2 is called
0-closed [16,17] if

• D1 and D2 can be made into Hilbert spaces H1 and H2 continuously
embedded in H with inner products 〈·, ·〉1 and 〈·, ·〉2 and norms ‖ · ‖1 and
‖ · ‖2, respectively;

• t is bounded with respect to ‖ · ‖1 and ‖ · ‖2, i.e., there exists C > 0 such
that

|t(f, g)| ≤ C‖f‖1‖g‖2, ∀f ∈ H1, g ∈ H2; (1.3)

• the bounded operator A : H1 → H2 satisfying

t(f, g) = 〈Af, g〉2, ∀f ∈ H1, g ∈ H2, (1.4)

is a bijection,2

For 0-closed forms, the following representation theorem holds.

Theorem 1.1 ([16,17]). Let t be a 0-closed form on D1 × D2, where D1 and
D2 are dense subspaces of H. Then the operator T associated to t is densely
defined, closed, and 0 belongs to the resolvent set of T . Moreover, also the
sesquilinear form t∗ given by

t∗(f, g) = t(g, f), ∀f ∈ D2, g ∈ D1,

is 0-closed and its associated operator is T ∗.

The main scope of this paper is to prove an equivalent formulation of 0-
closed forms (Theorem 2.4). In particular, we will employ the concept of mini-
mal pairs of non-negative sesquilinear forms which dominate a given sesquilin-
ear form (Definition 2.1). The auxiliary results Lemma 2.3 and Proposition 3.1
give some characterizations of minimal pairs assuming that the non-negative
sesquilinear forms are closed.

2. The equivalent formulation. Throughout the paper, we denote by ker(S)
and R(S) the kernel and the range of an operator S : D(S) → H2, respectively.
We use the symbol B(H1,H2) for the set of bounded operators S : H1 → H2.
Firstly, we introduce the set of pairs of dominating forms. Let D1 and D2 be
subspaces of H and t a sesquilinear form on D1 × D2. We denote by M(t) the
set of pairs (s1, s2) of non-negative sesquilinear forms such that

1Actually, the definition of closed forms can be given for a more general classes of forms,
namely for semi-bounded or sectorial forms [14].
2The existence of the bounded operator A : H1 → H2 satisfying (1.4) is ensured by (1.3).
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• s1 : D1 × D1 → C and s2 : D2 × D2 → C;
• for every f ∈ D1 and g ∈ D2, one has

|t(f, g)| ≤ s1[f ]
1
2 s2[g]

1
2 . (2.1)

Definition 2.1. We say that a pair (s1, s2) ∈ M(t) is minimal in M(t) if, for
every (p, q) ∈ M(t) such that p ≤ s1 and q ≤ s2, we have p = s1 and q = s2.

Remarks 2.2. 1. If s is a non-negative sesquilinear form on D × D, then
trivially (s, s) belongs to M(s) by the Cauchy-Schwarz inequality

|s(f, g)| ≤ s[f ]
1
2 s[g]

1
2 ,

and it is also minimal in M(s).
2. If t is a sesquilinear form and (s1, s2) is minimal in M(t), then also

(αs1, α−1s2) is minimal in M(t) for any α > 0. Anyway, even in the non-
negative case, there might exist other less trivial minimal pairs. To make
an example, let H = C

2 and s the non-negative form defined as follows

s(f, g) = 2f(1)g(1) + 2f(2)g(2), ∀f, g ∈ C
2,

where f = (f(1), f(2)) and g = (g(1), g(2)). The pair (s1, s2) made with

s1(f, g) = 4f(1)g(1) + f(2)g(2), ∀f, g ∈ C
2,

and

s2(f, g) = f(1)g(1) + 4f(2)g(2), ∀f, g ∈ C
2,

is in M(s). Indeed, by the Cauchy-Schwarz inequality, for every f, g ∈ C
2,

|s(f, g)| = |2f(1) · g(1) + f(2) · 2g(2)|
≤ (4|f(1)|2 + |f(2)|2) 1

2 (|g(1)|2 + 4|g(2)|2) 1
2

= s1[f ]
1
2 s2[g]

1
2 .

Moreover, (s1, s2) is minimal in M(s). Indeed, let (p, q) ∈ M(s) with
p ≤ s1 and q ≤ s2. We have

2 = s((1, 0), (1, 0)) ≤ p[(1, 0)]
1
2 q[(1, 0)]

1
2 ≤ s1[(1, 0)]

1
2 s2[(1, 0)]

1
2 = 2,

so p[(1, 0)]q[(1, 0)] = 4. Since p ≤ s1 and q ≤ s2, we have p[(1, 0)] =
s1[(1, 0)] = 2 and q[(1, 0)] = s2[(1, 0)] = 1. In the same way, we can prove
that p[(0, 1)] = s1[(0, 1)] = 1 and q[(0, 1)] = s2[(0, 1)] = 2. Thus the non-
negative forms p and q are completely determined knowing p((1, 0), (0, 1))
and q((1, 0), (0, 1)). In particular, denoting by s1 − p the sequilinear form
given by the difference between s1 and p, we have

|p((1, 0), (0, 1))| = |(s1 − p)((1, 0), (0, 1))|
≤ (s1 − p)[(1, 0)]

1
2 (s1 − p)[(0, 1)]

1
2 = 0,

where the first line holds because s1((1, 0), (0, 1)) = 0 and the second line
is valid by the Cauchy-Schwarz inequality since s1 − p is non-negative
by the hypothesis on p. In conclusion, p = s1. With similar arguments
q = s2, i.e., (s1, s2) is minimal in M(s).
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In the end of Section 3, we will give another example, but in infinite dimen-
sion, showing several minimal pairs. Now we are going to prove a preliminary
result (Lemma 2.3) which will be useful in the proof of our main claim, i.e.,
Theorem 2.4. We start with a particular representation of a sesquilinear form
t on D1 × D2 determined by a given pair of closed non-negative sesquilinear
forms (s1, s2) in M(t). Let

˜D1 = ker(s1)⊥ ∩ D1 and ˜D2 = ker(s2)⊥ ∩ D2, (2.2)

where ker(s1)⊥ and ker(s2)⊥ are the orthogonal complements of ker(s1) and
ker(s2) in H, respectively. The restrictions s̃1, s̃2 of s1, s2 on ˜D1, ˜D2, respec-
tively, are closed non-negative sesquilinear forms with ker(s̃1) = {0} and
ker(s̃2) = {0}. Now let

〈f, f ′〉1 = s̃1(f, f ′) and 〈g, g′〉2 = s̃2(g, g′), f, f ′ ∈ ˜D1, g, g′ ∈ ˜D2,

(2.3)

‖f‖1 = s̃1[f ]
1
2 and ‖g‖2 = s̃2[g]

1
2 , f ∈ ˜D1, g ∈ ˜D2. (2.4)

Since s̃1 and s̃2 are closed forms, ˜D1 and ˜D2 are complete with respect to the
inner products 〈·, ·〉1 and 〈·, ·〉2 in (2.3), respectively. We denote by H1 and H2

the Hilbert spaces made in this way. By (2.1), the restriction of t on ˜D1 × ˜D2

can be considered as a bounded sesquilinear form with respect to the norms
‖ · ‖1 and ‖ · ‖2 in (2.4) induced by s̃1 and s̃2, respectively. Then, by Riesz’s
theorem, there exists an operator B ∈ B(H1,H2) such that

t(f, g) = 〈Bf, g〉2, ∀f ∈ ˜D1, g ∈ ˜D2. (2.5)

In particular, again by (2.1), B has norm3 ‖B‖ less or equal 1. We have the
following characterization.

Lemma 2.3. Let t be a sesquilinear form on D1 × D2, where D1 and D2 are
subspaces of H, and let (s1, s2) be a pair of closed non-negative sesquilinear
forms in M(t). Then (s1, s2) is minimal in M(t) if and only if the operator B
in (2.5) is a unitary operator.

Proof. Let us assume that (s1, s2) is minimal in M(t). By (2.5),

|t(f, g)| ≤ ‖Bf‖2‖g‖2 = ‖Bf‖2s2[g]
1
2 , ∀f ∈ ˜D1, g ∈ ˜D2. (2.6)

Let I : H → H be the identity operator, O1 : H → H and O2 : H → H
the orthogonal projections onto ker(s1)⊥ and ker(s2)⊥, respectively. We note
that ker(s1), ker(s2) are closed since s1, s2 are closed forms and that for f ∈
D1, g ∈ D2, we have (I − O1)f ∈ ker(s1) ∈ D1, (I − O2)g ∈ ker(s2) ∈ D2, so
O1f ∈ ˜D1, O2g ∈ ˜D2. Let p be the sesquilinear form defined as follows

p(f, g) = 〈BO1f,BO1g〉2, ∀f, g ∈ D1.

Hence, the inequality (2.6) can be rewritten as

|t(f, g)| ≤ p[f ]
1
2 s2[g]

1
2 , ∀f ∈ ˜D1, g ∈ ˜D2. (2.7)

3For simplifying the notation, we do not add a symbol to ‖B‖ to specify the spaces H1 and
H2. We are going to do this also for other operators.
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Considering that t(f, g) = 0 if f ∈ ker(s1) or g ∈ ker(s2) and that p[O1f ] =
p[f ], s2[O2g] = s2[g] for every f ∈ D1, g ∈ D2, the inequality (2.7) extends by
linearity for every f ∈ D1 and g ∈ D2. In other words, (p, s2) ∈ M(t).
As said before, ‖B‖ ≤ 1 and then p[f ]

1
2 = ‖BO1f‖2 ≤ ‖O1f‖1 = s1[O1f ]

1
2 =

s1[f ]
1
2 for every f ∈ D1. Since (s1, s2) is minimal in M(t), we have ‖Bf‖2 =

p[f ]
1
2 = s1[f ]

1
2 = ‖f‖1 for every f ∈ ˜D1, i.e., B is an isometry. Because

|t(f, g)| ≤ ‖f‖1‖B∗g‖1, ∀f ∈ ˜D1, g ∈ ˜D2,

holds too, in the same way, we have that B∗ is an isometry. In conclusion, B
is unitary.

Now assume that B is a unitary operator. Let (p, q) ∈ M(t) be such that
p ≤ s1 and q ≤ s2. Then there exist P ∈ B(H1) and Q ∈ B(H2) satisfying

‖P‖ ≤ 1, ‖Q‖ ≤ 1, (2.8)

p[f ] = ‖Pf‖21 for every f ∈ ˜D1, and q[g] = ‖Qg‖22 for every g ∈ ˜D2. By [14,
Ch. VI, Lemma 3.1], there exists R ∈ B(Hp,Hq)4 such that

‖R‖ ≤ 1, (2.9)

t(f, g) = 〈RPf,Qg〉2, ∀f ∈ ˜D1, g ∈ ˜D2.

Therefore, by uniqueness of the associated operator, B = Q∗RP . Moreover,

‖f‖1 = ‖Bf‖2 = ‖Q∗RPf‖2 ≤ ‖Pf‖1 ≤ ‖f‖1, ∀f ∈ ˜D1,

by (2.8) and (2.9), i.e., p[f ] = ‖Pf‖21 = ‖f‖21 = s1[f ] for every f ∈ ˜D1.
Furthermore, on ker(s1) (which, as said before, is closed), s1 and p are null.
Hence, by linearity, p = s1. Working in a similar way with B∗, we also find
that q = s2. Thus (s1, s2) is minimal in M(t). �

Now we are ready to prove the main result of the paper.

Theorem 2.4. Let t be a sesquilinear form on D1 × D2, where D1 and D2 are
dense subspaces of H. The following statements are equivalent.

(i) t is 0-closed;
(ii) there exists a pair (s1, s2) of closed strictly-positive sesquilinear forms

minimal in M(t).

Proof. (i) =⇒ (ii) Let 〈·, ·〉1 and 〈·, ·〉2 be the inner products which make D1

and D2 two Hilbert spaces based on the definition of 0-closed forms. Let A =
U |A| = |A∗|U be the polar decomposition of the bounded operator A in (1.4).
In particular, since A is bijective, U is a unitary operator and |A| 1

2 : H1 → H1,
|A∗| 1

2 : H2 → H2 are bijective self-adjoint positive operators. By [10, Theorem
2.7], we also have A = |A∗| 1

2 U |A| 1
2 . Let us define

s1(f, f ′) = 〈|A| 1
2 f, |A| 1

2 f ′〉1, f, f ′ ∈ D1,

s2(g, g′) = 〈|A∗| 1
2 g, |A∗| 1

2 g′〉2, g, g′ ∈ D2.

4Hp and Hq are the completions of ˜D1 and ˜D2 with respect to the norms induced by p and

q, respectively.
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The sesquilinear forms s1 and s2 are strictly-positive and closed forms because
|A| 1

2 , |A∗| 1
2 are bijective and 〈·, ·〉1, 〈·, ·〉2 are strictly-positive and closed forms.

Moreover,

|t(f, g)| = |〈|A∗| 1
2 U |A| 1

2 f, g〉| = |〈U |A| 1
2 f, |A∗| 1

2 g〉| ≤ s1[f ]
1
2 s2[g]

1
2 ,

i.e., (s1, s2) ∈ M(t). Finally, (s1, s2) is minimal in M(t) by Lemma 2.3 because
the operator B constructed as in (2.5) coincides with U which is a unitary
operator.

(ii) =⇒ (i) Let

〈f, f ′〉1 = s1(f, f ′) and 〈g, g′〉2 = s2(g, g′), f, f ′ ∈ D1, g, g′ ∈ D2.

Since s1 and s2 are closed strictly-positive sesquilinear forms, D1 and D2 turn
into Hilbert spaces continuously embedded in H with inner products 〈·, ·〉1 and
〈·, ·〉2, respectively. Moreover, t is bounded with respect to the norms of these
spaces. Finally, the last condition required in the definition of 0-closed forms
is satisfied as a consequence of Lemma 2.3. �

3. A supplementary result. In this section, we prove another characterization
of minimal forms concerning a different representation in comparison to (2.5).

As previously, let t be a sesquilinear form on D1 × D2 and (s1, s2) ∈ M(t)
with s1 and s2 non-negative and closed. By Kato’s second representation the-
orem [14, Theorem VI.2.23], there exist positive self-adjoint operators H1 and
H2 in H with D(H1) = D1 and D(H2) = D2 such that s1[f ] = ‖H1f‖2 and
s2[g] = ‖H2g‖2 for every f ∈ D1 and g ∈ D2. We write R(H1) and R(H2)
for the closures of R(H1) and R(H2) in H, respectively. By (2.1) and [14, Ch.
VI, Lemma 3.1], there exists a bounded operator Q ∈ B(R(H1), R(H2)) with
‖Q‖ ≤ 1 such that

t(f, g) = 〈QH1f,H2g〉, f ∈ D1, g ∈ D2.

Moreover, ker(H1) = ker(s1), ker(H2) = ker(s2), so the restrictions ˜H1 and
˜H2 of H1 and H2 on ˜D1 and ˜D2 (which are defined in (2.2)), respectively, are
injective and we can also write

t(f, g) = 〈Q˜H1f, ˜H2g〉, f ∈ ˜D1, g ∈ ˜D2. (3.1)

Proposition 3.1. Let t be a sesquilinear form on D1×D2, where D1 and D2 are
dense subspaces of H and let (s1, s2) be a pair of closed non-negative sesquilin-
ear forms in M(t). Then (s1, s2) is minimal in M(t) if and only if Q in (3.1)
is a unitary operator.

Proof. Let H1 and H2 be the operators introduced above. The operators Q
and B of (2.5) are connected by the following relation

Q = ˜H2B ˜H1

−1
on R(H1).

Comparing the representations (2.5) and (3.1) for t∗ instead of t, we also have

Q∗ = ˜H1B
∗
˜H2

−1
on R(H2),
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so

QQ∗ = ˜H2BB∗
˜H2

−1
on R(H2), Q∗Q = ˜H1B

∗B ˜H1

−1
on R(H1),

and

BB∗ = ˜H2

−1
QQ∗

˜H2 on ˜D2, B∗B = ˜H1

−1
Q∗Q˜H1 on ˜D1.

Thus, by Lemma 2.3 and taking into account that R(H1), R(H2) are dense
in their corresponding closures, (s1, s2) is minimal in M(t) if and only if Q is
unitary. �

Example. Let us consider H = D = L2(R) and a bounded measurable function
r : R → C. We write N = {x ∈ R : r(x) = 0}. Let

t(f, g) =
∫

R

r(x)f(x)g(x)dx, ∀f, g ∈ H. (3.2)

The sesquilinear form t is bounded, and it is non-negative if and only if r(x)
is non-negative for a.e. x ∈ R. For any measurable function p : R → [0,+∞),
with c ≤ p(x) ≤ d for some c, d > 0 and every x ∈ R, we define

s1(f, g) =
∫

R

|r(x)|p(x)f(x)g(x)dx, ∀f, g ∈ H

and

s2(f, g) =
∫

R

|r(x)|p(x)−1f(x)g(x)dx, ∀f, g ∈ H.

The sesquilinear forms s1 and s2 are non-negative (trivially closed by bounded-
ness) and, by the Cauchy-Schwarz inequality, (s1, s2) ∈ M(t). Moreover, again
independently by p, we have ker(s1) = ker(s2) = {f ∈ H : f(x) = 0 for a.e. x ∈
R\N} ≡ L2(N), and so ˜D1 = ˜D2 = {f ∈ H : f(x) = 0 for a.e. x ∈ N} ≡
L2(R\N). The pair (s1, s2) is minimal in M(t) for any choice of p by Propo-
sition 3.1. Indeed, one easily checks that the operators ˜H1 and ˜H2 are the
multiplication operators by |r(x)| 1

2 p(x)
1
2 and |r(x)| 1

2 p(x)− 1
2 on the domain

L2(R\N), respectively. Hence, by comparing (3.2) and (3.1), the operator Q
is the multiplication operator by r

|r| on the domain L2(R\N) and it is in par-
ticular unitary.
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Università degli Studi di Palermo
90123 Palermo
Italy
e-mail: rosario.corso02@unipa.it

Received: 13 August 2022

Revised: 3 September 2022

Accepted: 19 September 2022.


	An equivalent formulation of 0-closed sesquilinear forms
	Abstract
	1. Introduction
	2. The equivalent formulation
	3. A supplementary result
	Acknowledgements
	References




