We have theoretically investigated the phenomenon of Eckhaus instability of stationary patterns arising in hyperbolic reaction–diffusion models on large finite domains, in both supercritical and subcritical regime. Adopting multiple-scale weakly-nonlinear analysis, we have deduced the cubic and cubic–quintic real Ginzburg–Landau equations ruling the evolution of pattern amplitude close to criticality. Starting from these envelope equations, we have provided the explicit expressions of the most relevant dynamical features characterizing primary and secondary quantized branches of any order: stationary amplitude, existence and stability thresholds and linear growth rate. Particular emphasis is given on the subcritical regime, where cubic and cubic–quintic Ginzburg–Landau equations predict qualitatively different dynamical pictures. As an illustrative example, we have compared the above-mentioned analytical predictions to numerical simulations carried out on the hyperbolic modified Klausmeier model, a conceptual tool used to describe the generation of stationary vegetation stripes over flat arid environments. Our analysis has also allowed to elucidate the role played by inertia during the transient regime, where an unstable patterned state evolves towards a more favorable stable configuration through sequences of phase-slips. In particular, we have inspected the functional dependence of time and location at which wavelength adjustment takes place as well as the possibility to control these quantities, independently of each other.

Consolo G., Gabriele Grifo' (2022). Eckhaus instability of stationary patterns in hyperbolic reaction–diffusion models on large finite domains. SN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 3(5), 1-32 [10.1007/s42985-022-00193-0].

Eckhaus instability of stationary patterns in hyperbolic reaction–diffusion models on large finite domains

Gabriele Grifo'
Ultimo
2022-08-17

Abstract

We have theoretically investigated the phenomenon of Eckhaus instability of stationary patterns arising in hyperbolic reaction–diffusion models on large finite domains, in both supercritical and subcritical regime. Adopting multiple-scale weakly-nonlinear analysis, we have deduced the cubic and cubic–quintic real Ginzburg–Landau equations ruling the evolution of pattern amplitude close to criticality. Starting from these envelope equations, we have provided the explicit expressions of the most relevant dynamical features characterizing primary and secondary quantized branches of any order: stationary amplitude, existence and stability thresholds and linear growth rate. Particular emphasis is given on the subcritical regime, where cubic and cubic–quintic Ginzburg–Landau equations predict qualitatively different dynamical pictures. As an illustrative example, we have compared the above-mentioned analytical predictions to numerical simulations carried out on the hyperbolic modified Klausmeier model, a conceptual tool used to describe the generation of stationary vegetation stripes over flat arid environments. Our analysis has also allowed to elucidate the role played by inertia during the transient regime, where an unstable patterned state evolves towards a more favorable stable configuration through sequences of phase-slips. In particular, we have inspected the functional dependence of time and location at which wavelength adjustment takes place as well as the possibility to control these quantities, independently of each other.
17-ago-2022
Consolo G., Gabriele Grifo' (2022). Eckhaus instability of stationary patterns in hyperbolic reaction–diffusion models on large finite domains. SN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 3(5), 1-32 [10.1007/s42985-022-00193-0].
File in questo prodotto:
File Dimensione Formato  
paper.pdf

accesso aperto

Descrizione: Paper
Tipologia: Versione Editoriale
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/571945
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact