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Abstract
We have theoretically investigated the phenomenon of Eckhaus instability of stationary
patterns arising in hyperbolic reaction–diffusion models on large finite domains, in both
supercritical and subcritical regime. Adopting multiple-scale weakly-nonlinear analysis, we
have deduced the cubic and cubic–quintic real Ginzburg–Landau equations ruling the evo-
lution of pattern amplitude close to criticality. Starting from these envelope equations, we
have provided the explicit expressions of the most relevant dynamical features characterizing
primary and secondary quantized branches of any order: stationary amplitude, existence and
stability thresholds and linear growth rate. Particular emphasis is given on the subcritical
regime, where cubic and cubic–quintic Ginzburg–Landau equations predict qualitatively dif-
ferent dynamical pictures.As an illustrative example,wehave compared the above-mentioned
analytical predictions to numerical simulations carried out on the hyperbolic modified Klaus-
meier model, a conceptual tool used to describe the generation of stationary vegetation stripes
over flat arid environments. Our analysis has also allowed to elucidate the role played by
inertia during the transient regime, where an unstable patterned state evolves towards a
more favorable stable configuration through sequences of phase-slips. In particular, we have
inspected the functional dependence of time and location at which wavelength adjustment
takes place as well as the possibility to control these quantities, independently of each other.
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1 Introduction

Self-organizing patterns are quite ubiquitous in nature and the study of the associated nonlin-
ear spatial processes has become nowadays a sub-area of complexity science. Despite pattern
formation is observed in different fields, such as biology, ecology, chemistry and medicine,
the underlying phenomena share some common features [1, 2]. For instance, it is widely
accepted that regular periodic stationary patterns, that in the one-dimensional case are vari-
ously referred to as bands, rolls or stripes, arise from Turing-like instability. It results from
the coupling between local interactions and dispersal, even in the absence of heterogene-
ity of the environment in which the process takes place. In some contexts, the large spatial
scale and/or the slow evolution of patterns prevent replicability under laboratory conditions,
so that theoretical investigations based upon mathematical models represent an efficient and
inexpensive tool to acquire a rigorous understanding on the complex spatio-temporal dynam-
ics. Mathematical models have indeed allowed to get valuable insights on many aspects of
pattern dynamics: formation of regular and irregular mosaics, scaling phenomena, spatial
modulation of pattern amplitude, transitions from a uniform state to a periodic one as well
as between different periodic states [3–8]. In particular, it is known that, in a large domain,
the equation ruling the spatio-temporal evolution of pattern amplitude close to onset is in the
form of a Ginzburg–Landau (GL) equation [9–12]. This equation also allows to inspect the
dependence of the stability of the resulting periodic states on wavelength. Indeed, patterns
may undergo different destabilization mechanisms associated with changes in wavelength
and amplitude, one of which is the Eckhaus instability (EI) [3–7]. EI acts on the roll phase to
compress or dilate pattern wavelength and takes place when a given roll wavelength cannot
be accommodated by the environment so that some of them are eventually created or elimi-
nated. The process leading the system to be rearranged in a more favorable configuration is
referred to as phase-slip [3, 5, 6].

A large body of literature has successfully addressed the bifurcation analysis of EI in
both infinite and finite spatial domains and has also addressed the study of complex intrigu-
ing dynamics, such as those associated to quasi-periodic solutions and homoclinic snaking
bifurcation structures [3–6, 8, 13–18]. However, none of those works has inspected the EI
instability of stationary and quantized Turing patterns in the context of hyperbolic models.
As widely reported in previous works [19–27], hyperbolic systems bring many advantages.
Firstly, they take inertial effects explicitly into account and, thus, allow to overcome to para-
dox of propagation of disturbances at infinite speed, typical of parabolic models. They also
appear more suitable to describe transient phenomena characterized by waves evolving in
space over a finite time. Moreover, despite the mathematical convergence of parabolic and
hyperbolicmodels is expected in the long-time limit due to the stationary nature of the excited
patterns, the coupling between hyperbolicity and nonlinearity may generate richer transient
dynamics.

In particular, the present manuscript addresses the analysis of one-dimensional station-
ary Turing patterns emerging in a class of two-compartments hyperbolic reaction–diffusion
models, where both species undergo self-diffusion, defined on a large finite domain. In
some previous works, linear and weakly-nonlinear stability analyses on the homogeneous
steady states were carried out over small (in the presence of cross-diffusion [25]) or extended
domains (with constant [19] and non-constant [20] inertial times). Here, we aim at address-
ing the stability and quantization of spatially-periodic patterns, in both supercritical and
subcritical regimes.
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With this inmind, we aim at deducing, first, the equation governing the evolution of pattern
amplitude close to the onset of supercritical and subcritical bifurcation. To this aim, we apply
multiple-scale weakly nonlinear expansion which is pushed up to the fifth perturbative order.
Depending on the perturbative order atwhich the expansion is truncated, this procedure allows
to build a cubic or cubic–quintic GL equation with real coefficients. Moreover, taking into
account the quantization of modes due to the spatial confinement, we address a bifurcation
analysis of the EI to accurately describe the existence and stability thresholds of all periodic
branches [4]. This investigation is finalized at inspecting the qualitatively different dynamical
features captured by the above GL equations.

Theoretical predictions here developed are then validated through a comparison with
numerical simulations. To this aim, an illustrative example in which EI takes place in the
context of dry-land ecology is here considered: the hyperbolic generalization of the modified
Klausmeier model [19, 20, 28–31]. It represents one of the simplest two-component systems
able to predict the formation of vegetation bands in flat arid environments as the result of
competition between soil water and vegetation biomass.

The comparison between analytical and numerical results made it possible to address
several issues: (i) to validate theoretical predictions on bifurcation analysis developed in
the frameworks of cubic and cubic–quintic real GL equations, in both supercritical and
subcritical regime; (ii) to investigate how hyperbolicity affects not only transient regime
dynamics between different patterned states but also the occurrence of phase slips observed
during an Eckhaus-driven restabilizing process; (iii) the feasibility to control, independently
of each other, the time and the spatial location at which such phase slips occur.

The manuscript is organized as follows.
InSect. 2,wepresent the class of hyperbolic reaction–diffusion models under investigation

and develop linear and weakly nonlinear stability analysis. The former allows to deduce the
Turing instability threshold, the latter is used to deduce the envelope equations at different
perturbative orders.

In Sect.3, we address the bifurcation analysis of the EI. First, we briefly review the most
relevant results associated to the supercritical regime in the framework of the cubic GL
equation. Then, we inspect the subcritical regime via both cubic and cubic–quintic GL
equations. In particular, in all cases, we deduce the expressions of themost relevant dynamical
features associated to primary and secondary quantized periodic states: stationary amplitude,
existence and stability thresholds and linear growth rate. Finally, this section is concluded
with a focus on the difficulties encountered in the theoretical prediction of the phase slip
phenomenon.

In Sect. 4, we first validate the theoretical predictions developed in the previous sections
by means of a comparison with numerical simulations carried out on the hyperbolic modified
Klausmeier model. Then, we address further numerical investigations to inspect the spatio-
temporal dependence of phase slip and to emphasize the role played by inertial times.

Concluding remarks are given in the last section.

2 Amplitude equations for hyperbolic reaction–diffusionmodels

We consider a class of 1D hyperbolic reaction–diffusion models for two species u(x, t)
and w(x, t), both undergoing self-diffusion. We denote the w-by-u diffusion ratio by d , the
kinetic terms by f (u, w) and g(u, w), the phenomenologically-introduced arbitrary con-
stants by γ0 and μ0 which are related to the inertial times τ u and τw of the two species by
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γ0 = 1/τ u and μ0 = d/τw . According to Extended Thermodynamics (ET) theory [32], the
diffusive fluxes J u(x, t) and Jw(x, t) are considered as additional field variables obeying
thermodynamically-consistent balance equations that, in the parabolic limit approximation,
τ u → 0 and τw → 0, reduce to classical Fick’s law. In vector form, this model reads:

Ut + MUx = N(U) (1)

being:

U =

⎡
⎢⎢⎣

u
w

J u

Jw

⎤
⎥⎥⎦ , M =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
γ0 0 0 0
0 μ0 0 0

⎤
⎥⎥⎦ , N =

⎡
⎢⎢⎣

f (u, w)

g(u, w)

−γ0 J u

−μ0
d Jw

⎤
⎥⎥⎦ , (2)

where subscripts denote partial derivative with respect to the indicated variable. In the liter-
ature, the hyperbolic structure (1), (2) has been successfully employed in different contexts,
such as plant ecology [19], epidemiology [33], air pollution [34] and chemistry [35].

In order to deduce the conditions for Turing instability let us briefly address linear
stability analysis. Let B be a control parameter and U∗ = (u∗, v∗, 0, 0) a positive spatially-
homogeneous steady-state satisfying N(U) = 0. By requiring that U∗ is stable against
spatially-uniform perturbations but unstable with respect to non-homogeneous ones, we get
the following restrictions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ∗
u + g∗

w < 0

f ∗
u g∗

w − f ∗
wg∗

u > 0

d f ∗
u + g∗

w > 0(
d f ∗

u + g∗
w

)2 − 4d
(

f ∗
u g∗

w − f ∗
wg∗

u

)
> 0

(3)

where the asterisk denotes that the function is evaluated at U∗.
From (3), it can be easily deduced that the critical values of control parameter Bc and

wavenumber qc at the onset of Turing instability are obtained by solving:

d2 f ∗
u + 2d

(
2 f ∗

wg∗
u − f ∗

u g∗
w

)+ g∗
w
2 = 0, (4)

q2
c =

√
f ∗
u g∗

w − f ∗
wg∗

u

d
. (5)

Note that, since we deal with the formation of stationary patterns, the hyperbolic structure of
system (1), (2) does not affect the expression of the critical parameters at onset, so that the
occurrence of Turing instability is ruled by the same conditions found in classical parabolic
models [2].

To describe the spatio-temporal evolution of pattern amplitude close to Turing threshold
(4), (5), multiple-scale weakly nonlinear analysis is now addressed [3, 6, 8, 36, 37]. To this
aim, we consider a small dimensionless parameter ε, expand the control parameter B around
Bc and the field U = U − U∗ as

B = Bc + ε2B2 + ε4B4 + O(ε6),

U = εU1 + ε2U2 + ε3U3 + ε4U4 + ε5U5 + O(ε6) (6)

and introduce different time and spatial scales as follows:

∂

∂t
→ ε2

∂

∂T2
+ ε4

∂

∂T4
,

∂

∂x
→ ∂

∂x
+ ε

∂

∂ X
.

(7)
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After substituting the above expansions into the governing system (1), (2), applying zero-
flux boundary conditions over the physical domain x ∈ [0, D] and collecting terms of the
same orders of ε, a set of linear equations for the Ui is obtained:

at order 1 ∂U1
∂x − K ∗

c U1 = 0

at order 2 ∂U2
∂x − K ∗

c U2 = M−1 F̃2

at order 3 ∂U3
∂x − K ∗

c U3 = M−1 F̃3

at order 4 ∂U4
∂x − K ∗

c U4 = M−1 F̃4

at order 5 ∂U5
∂x − K ∗

c U5 = M−1 F̃5

(8)

where the vectors F̃ j ( j = 2, . . . , 5) are given by

F̃2 = 1
2

[(
U1 · ∇)(2) N

]∗
Bc

− M ∂U1
∂ X ,

F̃3 =
[(
U1 · ∇) ((U2 · ∇)N)+ 1

6

(
U1 · ∇)(3) N

]∗
Bc

− M ∂U2
∂ X − ∂U1

∂T2
+ LU1,

F̃4 =
[(
U1 · ∇) ((U3 · ∇)N)+ 1

2

(
U2 · ∇)(2) N + 1

2

(
U1 · ∇)(2) ((U2 · ∇)N)

+ 1
24

(
U1 · ∇)(4) N

]∗
Bc

+ B2
2

[
d
[(
U1·∇

)(2)
N
]∗

dB

]

Bc

− M ∂U3
∂ X − ∂U2

∂T2
+ LU2,

F̃5 =
[(
U1 · ∇) ((U4 · ∇)N)+ 1

2

(
U1 · ∇)(2) ((U3 · ∇)N)+ 1

2

(
U2 · ∇)(2) ((U1 · ∇)N)

+ (
U2 · ∇) ((U3 · ∇)N)+ 1

120

(
U1 · ∇)(5) N + 1

6

(
U1 · ∇)(3) ((U2 · ∇)N)

]∗
Bc

+ B2
6

[
d
[(
U1·∇

)(3)
N+3

(
U1·∇

)((
U2·∇

)
N
)]∗

dB

]

Bc

− M ∂U4
∂ X − ∂U3

∂T2
− ∂U1

∂T4
+ LU3 + L̃U1,

(9)
being ∇ = ∂/∂U, together with

K ∗
c =

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 − 1

d
f ∗
u f ∗

w 0 0
g∗

u g∗
w 0 0

⎤
⎥⎥⎦ , L = B2

[
d(∇N)∗
dB

]
Bc

, L̃ = B4

[
d(∇N)∗
dB

]
Bc

+ B2
2
2

[
d2(∇N)∗
dB2

]
Bc

.

(10)
Moreover, for a generic vector H, the expression (H · ∇)( j) stands for the operator

H · ∇ = H1
∂

∂u
+ H2

∂

∂w
+ H3

∂

∂ J u
+ H4

∂

∂ Jw
(11)

applied j times.
The set of equations (8)-(10) has to be solved sequentially, as sketched in the Appendix.

The removal of secular terms at O(ε3) leads to an envelope equation ruling the spatio-
temporal evolution of the pattern complex amplitude �(X , T2, T4) that takes the form of a
real cubic GL equation:

∂�

∂T2
= σ� − L|�|2� + ν

∂2�

∂ X2 , (12)

which preserves the structure found in classical parabolic models [3, 4, 6, 11]. It is worth
noticing that the real coefficients σ , L and ν inherit the dependence on the inertial times as
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follows:

σ (γ0, μ0) = 	[
d − 1 + q2

c d
(

d
μ0

− 1
γ0

)] ,

L (γ0, μ0) = 
[
d − 1 + q2

c d
(

d
μ0

− 1
γ0

)] ,

ν (γ0, μ0) = �[
d − 1 + q2

c d
(

d
μ0

− 1
γ0

)] ,

(13)

where the functions 	, 
 and � depend upon the w-by-u diffusion ratio d and the kinetic
terms, together with their partial derivatives, but are independent of the inertial times. The
explicit expressions of these functions are given in the Appendix for the illustrative example
considered in Sect. 4. Therefore, the hyperbolic structure of the systemmay affect the spatio-
temporal evolution of pattern amplitude. In particular, the growth rate σ and coefficient ν,
that in the pattern forming region are always positive, play a significant role during transient
regime. On the other hand, the sign of the Landau coefficient L determines the nature of the
dynamical regime: L > 0 corresponds to the supercritical regime, whereas L < 0 to the
subcritical one [19].

Remark It should be remarked that, to the best of our knowledge, weakly nonlinear analysis
in hyperbolic reaction–diffusion systems on large finite domains has been pushed up to the
third perturbative order [19, 25], allowing to provide a suitable description of supercritical
dynamics only. ��

From the removal of secular terms at O(ε4), the following compatibility condition for the
spatially evolution of the pattern amplitude is obtained [13]:

k1�X X X + k2|�|2�X + k3�X = 0. (14)

Therefore, to investigate subcritical dynamics, we push weakly nonlinear analysis up to
the fifth perturbative order where the removal of secular terms leads to the following envelope
equation for the pattern amplitude:

∂�

∂T
= σ� − L|�|2� + R|�|4� + ν

∂2�

∂ X2 , (15)

which is in the form of a real cubic–quintic GL equation. In (15), ∂/∂T = ∂/∂T2 +ε2∂/∂T4,
the coefficients here appearing are real and represent second-order corrections of the coeffi-
cient involved in the cubicGL equation (12), namely σ = σ +ε2σ̃ , L = L+ε2 L̃ , ν = ν+ε2ν̃

and R = ε2 R̃. Moreover, each of these coefficients encloses a non trivial dependence on the
inertial times which, acting as additional degrees of freedom, may offer a richer scenario of
spatio-temporal dynamics with respect to the parabolic counterpart. This statement holds true
despite hyperbolic and parabolic models share the same structure of weakly inverted bifurca-
tions to a stationary spatially-periodic state [14–17, 38, 39]. However, due to the cumbersome
expressions here involved, conclusions can be only given through numerical simulations. For
this reason, as well as to keep the length of the manuscript within reasonable limits, the full
expressions of all the real coefficients involved in Eqs. (12)–(15) will be explicitly given in
the Appendix for the illustrative example carried out in Sect. 4.
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3 Bifurcation analysis of the Eckhaus instability

The analysis carried out in this section focuses on the formation and stability of stationary 1D
Turing patterns originating in the hyperbolic reaction–diffusion system (1), (2) over a large
finite domain D ∝ 1/ε. In detail, the occurrence of the phenomenon of Eckhaus Instability
(EI) will be analytically investigated in both supercritical and subcritical regime, with the
main aim of quantifying some key dynamical features: stationary amplitude of patterns,
existence and stability thresholds of each periodic bifurcating branch and linear growth rate.
To address how a non-favorable wavelength may lead to pattern instability, we adopt the
standard procedure adopted in the literature [4, 6].

3.1 Supercritical regime (a brief review)

To describe the spatio-temporal evolution of pattern amplitude close to onset of Turing
instability in the supercritical regime, it suffices to push weakly nonlinear analysis up to the
third perturbative order, where the cubic GL equation (12) is retrieved. We remind that the
coefficients σ and ν are always positive whereas the Landau coefficient L is positive in the
supercritical regime only. To reduce the number of coefficients here involved, let us apply
the following rescaling:

x̃ = π

D
x = π

εD
X , t̃ = π2ν

D2 t = π2ν

ε2D2 T2, �̃ = εD
√

L

π
√

ν
�, ζ = ε2D2

π2ν
σ, Q = D

π
q,

(16)
that allows to recast Eq. (12) as:

∂�̃

∂ t̃
= ζ �̃ − �̃|�̃|2 + ∂2�̃

∂ x̃2
. (17)

For simplicity, let us drop the tilde notation and assume that rolls take the structure:

� = �ei Qx eiθ , (18)

where � and Q describe, respectively, the amplitude and the phase of the envelope whereas
θ is an arbitrary constant, to be determined according to boundary conditions. Substituting
(18) into (17) gives, apart from the null solution � = 0, the stationary amplitude:

� =
√

ζ − Q2. (19)

Patterned solution (18), (19) exists for ζ > Q2 and is referred in the literature to as puremode
[4]. It has to be distinguished from the trivial solution � = 0 which is termed conductive
mode.

Note that, according to (16), (18) and the structure of U1 (see (A.13) in the Appendix),
the field has total wavenumber (Q + Qc). The finite domain, however, implies quantiza-
tion of modes, i.e. not all wavenumbers are admitted but only those integer ones satisfying
(Qn + Qc) ∈ Z, n ∈ N0. Let us call

�n =
√

ζ − Q2
n (20)

the quantized amplitude of the n-th mode, that exists for ζ > Q2
n := ζe,n . Zero-flux boundary

conditions, together with quantization of modes, restrict the possible values of θ to 0 and π
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only. For simplicity, we set θ = 0. To address linear stability of patterns, let us apply small
perturbations in amplitude and phase of rolls as follows:

� = �n(1 + ξ)ei(Qn x+φ), (21)

where |ξ |, |φ| 
 1. Substituting (21) into (17), keeping the linear terms in ξ and φ and taking
real and imaginary parts, the system ruling the evolution of perturbations results:

⎧⎨
⎩

∂φ
∂t = 2Qn

∂ξ
∂x + ∂2φ

∂x2

∂ξ
∂t = −2�2

nξ + ∂2ξ

∂x2
− 2Qn

∂φ
∂x

(22)

Then, by assuming: {
φ = φ̂eλt+ikx

ξ = ξ̂eλt+ikx (23)

being φ̂ and ξ̂ arbitrary constants and the dimensionless wavenumber k �= 0, the following
quadratic equation for the linear growth rate λ is obtained:

λ2 + 2
(
k2 + �2

n

)
λ + k2

(
2�2

n + k2 − 4Q2
n

) = 0, (24)

whose roots are:

λ(1,2)
n = −�2

n − k2 ±
√

�4
n + 4Q2

nk2. (25)

Since the eigenvalue λ
(2)
n is always negative, the stability of the associated mode depends on

λ
(1)
n which, taking into account (20), can be expressed as:

λ(1)
n = Q2

n − k2 − ζ +
√(

ζ − Q2
n

)2 + 4Q2
nk2. (26)

Consequently, stable roll solutions in a finite domain satisfy:

ζ > sup
k∈N

{
3Q2

n − 1

2
k2
}

= 3Q2
n − 1

2
:= ζE,n, (27)

the last equality of which identifies the well-known Eckhaus parabola in the (Q, ζ ) plane [4,
6].

Bymeans of this approach, we have thus retrieved awell-known result: the primary branch
�0 is always stable at onset (ζ ≥ ζe,0) while all the other branches �n (with n ≥ 1) have
always n unstable directions at onset and undergo n secondary bifurcations (of pitchfork type)
in order to become stable. The final, restabilizing, bifurcation corresponds to the Eckhaus
threshold [4]. The analysis developed in the supercritical regime, where pattern amplitude
obeys cubic real GL equation (17) can be thus summarized in tabular form, see Table 1.

Moreover, taking into account (13) and (16), we can conclude that the stationary amplitude
of each pure mode �n , the existence thresholds ζe,n and the Eckhaus thresholds ζE,n are
unaffected by hyperbolicity, being the ratio σ/ν independent of inertial times. This result is
compatible with the stationary nature of the emerging spatially-periodic patterns.

3.2 Subcritical regime

In this section we aim at describing the pattern amplitude close to onset of a subcritical
bifurcation via a real cubic (12) or cubic–quintic (15) GL equation. Although it is known
that these amplitude equations may capture different dynamical features, the goal of the
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Table 1 Dynamical features predicted by cubic GL equation (17) in the supercritical regime

Stationary amplitude of pure modes n ≥ 0 �n =
√

ζ − Q2
n

Existence threshold n ≥ 0 ζe,n = Q2
n

(Unstable) bifurcation points 1 < k ≤ n ζn,k = 3Q2
n − 1

2 k2

(Restabilizing) Eckhaus threshold n ≥ 1 ζE,n = ζn,1 = 3Q2
n − 1

2
Range of existence n ≥ 0 ζ ≥ ζe,n

Range of stability n = 0 ζ ≥ ζe,0

n ≥ 1 ζ ≥ ζE,n > ζe,n

subsequent analyses is to detect and emphasize such differences. We keep in mind that the
Landau coefficient L is negative in this regime.

3.2.1 Cubic Ginzburg–Landau equation

Starting from cubic GL equation (12), let us rescale the variables as in (16) except for the
amplitude:

�̃ = εD
√−L

π
√

ν
�. (28)

This allows to recast the cubic GL equation as follows:

∂�̃

∂ t̃
= ζ �̃ + �̃|�̃|2 + ∂2�̃

∂ x̃2
. (29)

Removing tilde notation and adopting similar arguments as those addressed in the previous
subsection, the quantized pure modes can be expressed as:

�n =
√

Q2
n − ζei Qn x (30)

and exist for
ζ < Q2

n := ζe,n . (31)

For each Qn , the previous expression is representative of two periodic branches that originate
from the conductive state through a subcritical pitchfork bifurcation. It is easy to verify that
the expression of the eigenvalue determining stability of each bifurcating branch λ

(1)
n (given

in (26)) as well as the condition on pattern stability (given in (27)) are formally unchanged
with respect to those found in the supercritical case. However, a key point has to be stressed
according to the analysis here carried out: the existence (31) and stability (27) conditions are
simultaneously fulfilled in the subcritical regime for n = 0 only. Results are summarized in
Table 2. Therefore, if the pattern amplitude obeyed cubic GL equation (29) close to the onset
of a subcritical bifurcation, the sole primary branch �0 would undergo Eckhaus instability
[40]. This marks a notably difference with respect to the behavior outlined in the supercritical
regime.

3.2.2 Cubic–Quintic Ginzburg–Landau equation

Let us now inspect whether the real cubic–quintic GL equation (15), obtained by pushing
weakly nonlinear expansion up to fifth order, may provide a qualitatively different description
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Table 2 Dynamical features predicted by cubic GL equation (29) in the subcritical regime

Stationary amplitude of pure modes n ≥ 0 �n =
√

Q2
n − ζ

Existence threshold n ≥ 0 ζe,n = Q2
n

(Restabilizing) Eckhaus threshold n = 0 ζE,0 = 3Q2
0 − 1

2
Range of existence n ≥ 0 ζ ≤ ζe,n

Range of stability n = 0 ζE,0 ≤ ζ ≤ ζe,0

of subcritical dynamics. The signs of the coefficients are assumed to be σ > 0, L < 0, ν > 0
and R̃ < 0 in order to guarantee that the the primary branch exhibits a weakly inverted
bifurcation at onset (i.e., it shows hysteresis) and that such a bifurcation saturates to quintic
order [14]. By using the following rescaling of variables:

x̃ = π

εD
X , t̃2 = π2ν

ε2D2 T2, t̃4 = π2ν

ε2D2 T4, �̃ = εD
√

−L

π
√

ν
�,

ζ = ε2D2

π2ν
σ , Q = D

π
q, ρ = − π2ν

D2L
2 R̃,

(32)

the cubic–quintic GL equation (15) may be recast as:

∂�̃

∂ t̃
= ζ �̃ + �̃|�̃|2 − ρ�̃|�̃|4 + ∂2�̃

∂ x̃2
, (33)

being ∂/∂ t̃ = ∂/∂ t̃2 + ε2
(
∂/∂ t̃4

)
. Notice that the coefficients ζ and ρ are real and positive.

Dropping tilde notation, considering “perfect” rolls structure as in (18) and using sim-
ilar arguments as those addressed in the previous subsections, the quantized pure modes
originating from the turning point can be expressed as �n = �nei Qn x with:

�n =

√√√√1 ±
√
1 + 4ρ

(
ζ − Q2

n

)

2ρ
. (34)

The large amplitude branch exists for

ζ > Q2
n − 1

4ρ
:= ζe,n, (35)

whereas the small amplitude one exists for

ζe,n < ζ < Q2
n . (36)

Considering (21), (23) and (33), the eigenvalue λ
(1)
n determining stability of pure modes is

given by

λ(1)
n = �2

n − k2 − 2ρ�4
n +

√
4ρ2�8

n − 4ρ�6
n + �4

n + 4Q2
nk2, (37)

that, using (34), allows to deduce the following stability condition for the large amplitude
branch:

ζ > sup
k∈N

{
2Q2

n − 1

4
k2 − 1

8ρ

[
1 −

√
1 − 4ρ

(
k2 − 4Q2

n

)]}

= 2Q2
n − 1

4
− 1

8ρ

[
1 −

√
1 − 4ρ

(
1 − 4Q2

n

)] := ζE,n, (38)
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the last equality of which defines the Eckhaus threshold predicted by cubic–quintic GL
equation. From the comparison between existence (35) and Eckhaus thresholds (38), it is
possible to identify which bifurcating branch may undergo EI as:

ζe,n ≤ ζE,n ⇔ −8ρ

(
Q2

n − 1

4

)
− 1 ≤

√
1 − 4ρ

(
1 − 4Q2

n

)
. (39)

Inequality (39) points out that the restabilizing mechanism depends on the order of the
bifurcating branch. Indeed, for n = 0, since quantization of modes implies

(
Q2

0 − 1/4
) ≤ 0,

the necessary and sufficient condition for the restabilization of the primary branch becomes:

2
(
1 − 4Q2

0

)
ρ ≤ 1, (40)

that represents a restriction on the allowed values of the coefficient ρ. On the other hand, for
n ≥ 1, since

(
Q2

n − 1/4
)

> 0, the inequality (39) is fulfilled for any ρ > 0, so implying that
all the secondary branches exhibit restabilizing Eckhaus bifurcations.

According to this analysis, the existence and consequently the amount of secondary bifur-
cations originating from periodic branches requires:

k ≤ 2|Qn |
√
1 + 1

8ρQ2
n

:= k∗
n , (41)

with k ∈ N. Since ρ > 0, the radicand is always greater than 1, so that k∗
n ≥ 2|Qn |.

Notice that, fulfillment of conditions (39) and (40), as well as the numerical estimation
of the quantity k∗

n in (41), depends on the value of the coefficient ρ and thus, it has to be
checked numerically for the specific model under consideration. This issue will be addressed
in the next section.

Therefore, the cubic–quintic GL equation predicts at least four key differences with
respect to the cubic counterpart: (i) the range of existence of patterns is bounded from below
ζ ≥ ζe,n := Q2

n − 1/(4ρ); (ii) such an existence threshold is smaller than the bifurcation
point (ζn = Q2

n) at which periodic branches originate from the conductive state; (iii) the
primary branch may undergo EI provided that (40) is satisfied whereas (iv) all the secondary
branches undergo EI and the number of restabilizing bifurcations depends on value of ρ

through condition (41).
Results contained in this subsection, that represent one of the novelties introduced in this

manuscript, are summarized in Table 3.
In the literature [14], Brand and Deissler tackled a similar study on Eckhaus instabil-

ity and deduced the analog of the Benjamin-Feir-Newell instability criterion for a weakly
inverted bifurcation. However, some differences with respect to the present work should be
pointed out. Indeed, those authors addressed the analysis on infinite domains only, so that
quantization of modes was not investigated. Furthermore, the stability domain for finite-
amplitude plane-wave solutions of cubic–quintic Ginzburg–Landau equation that are stable
against the Eckhaus sideband instability was provided in terms of wavenumber instead of
control parameter.

3.3 Spatio-temporal dependence of phase slip

The analysis carried out so far has revealed that the transition from an Eckhaus unstable
state towards a more favorable, stable, patterned configuration may occur under different
dynamical regimes. This process involves a sequence of transient states during which the
wavelength of patterns is adjusted via the formation of amplitude defects and the appearance
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Table 3 Dynamical features predicted by cubic–quintic GL equation (33) in the subcritical regime

Stationary amplitude of pure modes n ≥ 0 �n =
√[

1 +
√
1 + 4ρ

(
ζ − Q2

n

)]
/(2ρ)

Existence threshold n ≥ 0 ζe,n = Q2
n − 1

4ρ

(Unstable) bifurcation points 1 < k ≤ k∗
n ζn,k = 2Q2

n − 1
4 k2 − 1

8ρ

[
1 −

√
1 − 4ρ

(
k2 − 4Q2

n

)]

(Restabilizing) Eckhaus threshold n ≥ 0 ζE,n = 2Q2
n − 1

4 − 1
8ρ

[
1 −

√
1 − 4ρ

(
1 − 4Q2

n

)]

Range of existence n ≥ 0 ζ ≥ ζe,n

Range of stability n = 0 ζ ≥ ζE,0 > ζe,0 ⇔ 2
(
1 − 4Q2

0

)
ρ ≤ 1

n ≥ 1 ζ ≥ ζE,n > ζe,n always

of phase-slips. Phases-slips are defined as solutions of the real GL equation whose num-
ber of zeros varies as a function of time. In other words, assuming the pattern amplitude
� = �(x, t)eiψ(x,t), a wavelength can only be created or destroyed where the local
spatial phase ψ(x, t) is undefined, namely at time instants (t ′) and locations (x ′) where
Re(�(x ′, t ′)) = Im(�(x ′, t ′)) = 0 [5, 41, 42].

Unfortunately, the global evolution of a given perturbation cannot be correctly described
by a local analysis around a steady state, as the one performed in the previous sections, so
that the occurrence in time and the location in space of phase slips is hard to be predicted.
To the best of our knowledge, some good approximations of these quantities have been
obtained by means of local theories under the assumption that phase slip occurs ‘just’ after
an ad-hoc choice of initial data [5, 41], but no explicit expressions have been provided in the
general, global, case.Moreover, someworks [18, 40, 43] pointed out the possibility to control
and vary the time to phase slip only if some ‘free’ model parameters, not involved in the
spectrum of the linearized problem, are available. At the same time, those works inspected
the dependence of the time to phase slip on the linear growth rate but no mention was given
on the functional dependence of the spatial location at which phase slip occurs. Therefore,
the issue of controlling, independently of each other, time and space at which phase slip takes
place appears to be still unaddressed. This issue will be investigated numerically in Sect. 4.3.

4 An illustrative example: the hyperbolic modified Klausmeier model

In order to validate the theoretical predictions carried out in the previous sections, let us now
investigate, as an illustrative example, the occurrence of EI in the context of dry-land ecology.
To this aim, let us take into account one of the simplest, conceptual, two-compartment models
describing the formation of vegetation stripes in arid environments, i.e. the Klausmeier model
[28, 37, 44, 45]. In particular, the analysis will be focused on its modified version [29–31] that
has been introduced in the literature to model pattern dynamics over flat terrains. Moreover,
motivated by the observation of inertial effects [46–50] and long transient regimes [51–53]
in vegetation patterned dynamics, an hyperbolic generalization was proposed in [19, 20].

In this model, the two species introduced in Sect. 2 are representative of plant biomass
u(x, t) and soil–water w(x, t). It is also assumed that d � 1 measures the water-to-plant
diffusion ratio [30], τ u = 1/γ0 and τw = d/μ0 denote the inertial times associated to
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vegetation and water, respectively. Furthermore, the model encloses a per-capita rate of water
uptake proportional to plant biomass, the plant growth rate proportional to water uptake, a
linear dependence of plant loss with strength B and a mean annual rainfall represented by the
parameter A. According to the above assumptions, the hyperbolic reaction–diffusion model
is in the form (1), (2) with kinetic terms given by:

f (u, w) = u2w − Bu, g(u, w) = A − u2w − w. (42)

In line with the analysis carried out in Sect. 2 , plant mortality B is taken as the main control
parameter as it encloses variability due to natural, human and herbivory effects. According
to literature data [28, 54], realistic values of plant loss and rainfall belong to the ranges
B ∈ (0, 2) and A ∈ (0, 3), respectively. To evaluate the spatio-temporal evolution of pattern
dynamics, the governing system is integrated numerically over a finite domain of length D
by means of COMSOL Multiphysics [55]. Moreover, the MATLAB package PDE2PATH
[56] is used to build up the bifurcation diagrams in both supercritical and subcritical regimes.

In the Appendix we report all the explicit expressions of the quantities arising from linear
and weakly nonlinear analysis for the illustrative example here considered.

4.1 Supercritical regime

In the supercritical regime, the following model parameters are chosen: water-to-plant diffu-
sion ratio d = 103 and rainfall A = 2.8.According to (4), (5), (13), the considered setup gives
rise to a critical value of plant loss Bc = 3529×10−4, critical wavenumber qc = 0.3814 and
Landau coefficient L = +113× 10−5 > 0. The governing system (1), (2), (42) is integrated
over a spatial domain of length D = 200. For the computation of spatio-temporal dynamics
the overall time window here considered is t ∈ [0, 1.5 × 104].

The bifurcation diagram obtained in the supercritical regime is depicted in Fig. 1, where
solid red (dashed black) lines are representative of stable (unstable) branches. In agreement
with theoretical predictions (see Table 1), it consists of a primary branch (n = 0) and several
secondary branches (the cases n = 1, 2, 3 are here shown). The primary branch bifurcates
supercritically at Be,0 giving rise to two stable branches for B > Be,0. The secondary branches
originate from the conductive state at Be,n and, for n > 1, undergo (n−1) unstable (pitchfork)
bifurcations until they re-stabilize at the Eckhaus threshold BE,n . The bifurcation diagram is
computed for different values of inertial times achieving the same result, as expected from
the analysis carried out in Sect. 3.

The numerically-computed values of the existence and Eckhaus thresholds are summa-
rized in Table 4 and compared to the theoretical ones given in Table 1. As it can be noticed,
the resulting agreement between them is satisfying for all the investigated branches. The
agreement gets slightly worse for higher-order branches, as the dimensionless distance from
the Turing threshold ε2 increases, as expected from weakly nonlinear approximation. It
should be also remarked that the following inequalities on existence and Eckhaus thresholds,
Be,n > Be,n−1 and BE,n+1 > BE,n , hold for any n ≥ 1.

In order to check the validity of the bifurcation diagram and, in turn, to confirm the
theoretical predictions carried out in Sect. 3.1, let us now integrate numerically the governing
systems (1), (2) by varying the control parameter B. In all simulations, the initial condition is
assumed to take the form given by (6)2 and (A.13), where the pattern amplitude is taken as a
small perturbation of the stationary value for each considered branch �n = √

ζ − Q2
nei Qn x ,

in line with Eqs. (18), (20). Results are shown in Fig. 2.
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Fig. 1 Bifurcation diagram in the
supercritical regime. Solid red
(dashed black) lines represent
stable (unstable) stationary
branches. Existence Be,n and
Eckhaus BE,n thresholds are
indicated in the bottom and in the
top part of the figure, respectively

Table 4 Comparison between
theoretically-estimated and
numerically-computed
bifurcation points for the first
four periodic branches
characterizing the supercritical
regime. The quantity ε2

represents the dimensionless
distance from Turing threshold

Branch k BP Theoretical Numerical ε2

×10−4 ×10−4

�0 Be,0 3529 3529 1.1 × 10−4

�1 Be,1 3531 3531 7.1 × 10−4

1 BE,1 3534 3535 1.8 × 10−3

�2 Be,2 3537 3538 2.7 × 10−3

2 B2,2 3544 3543 4.1 × 10−3

1 BE,2 3553 3550 6.1 × 10−3

�3 Be,3 3545 3544 4.4 × 10−3

3 B3,3 3552 3554 7.2 × 10−3

2 B3,2 3566 3570 1.2 × 10−2

1 BE,3 3574 3580 1.5 × 10−2

Zero-flux boundary conditions impose that only integer values of the wavenumber are
allowed. Therefore, the systemwill only support periodic patternswhose overall wavenumber
Qc + Qn are integer. Since qc = 0.3814, according to (16), the rescaled value of wavenumber
becomes Qc = 24.28 and the closest integer is 24, so that the finite geometry shall select a
primary mode with wavenumber Qc + Q0 = 24. Considering that π(Qc + Q0)/D = 2π/�,
with � the pattern wavelength, the whole computational domain D shall thus accommodate
12�. Indeed, by choosing a value B > Be,0, starting from a small perturbation of the
branch �0, the confirmation of the stability of the primary branch is achieved, as can be
seen from Fig. 2a. Analogously, starting from Be,1 < B < BE,1 and setting as initial
condition a small perturbation of the branch �1, the system undergoes a phase slip, during
which the number of wavelengths is reduced, and finally it converges towards the stable �0

branch (Fig. 2b). On the contrary, by leaving the previous initial condition unchanged, if
the control parameter is set just above the Eckhaus threshold, i.e. B > BE,1, the system
now stabilizes along the stable branch �1. In this latter case, in fact, the next closest integer
is 25, so the finite geometry shall select a mode with wavenumber Qc + Q1 = 25 that
corresponds to D = 12.5� (see Fig. 2c). Similar conclusions can be drawn for higher-order
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Fig. 2 Spatio-temporal evolution of supercritical pattern dynamics obtained integrating numerically the hyper-
bolic Klausmeier model (1), (2) with the following parameter set: D = 200, A = 2.8, d = 103, μ0 = 105,
γ0 = 102. In the figures, the control parameter B is varied as follows: a B > Be,0, b Be,1 < B < BE,1, c
B > BE,1, d Be,2 < B < BE,2, e B > BE,2, f Be,3 < B < BE,3 and g B > BE,3. The different initial
conditions here used are specified in the main text

branches. In detail, Fig. 2d represents the evolution from a small perturbation of the branch
�2 (characterized by Qc + Q2 = 23 and D = 11.5�) by using Be,2 < B < BE,2. Indeed,
in this range of the control parameter, the initial branch is unstable, so the system converges
to the stable branch �0 and a phase slip at the boundary of the domain occurs. Instead,
if the value of the control parameter is slightly increased to overcome Eckhaus threshold,
B > BE,2, the branch�2 now stabilizes (see Fig. 2e). Finally, the last two figures correspond
to simulations where the initial conditions are set as small perturbations of branch �3 with
control parameter slightly smaller (Be,3 < B < BE,3, Fig. 2f) or larger (B > BE,3, Fig. 2g)
than the Eckhaus threshold of the corresponding branch. As can be seen, in the former
case, the initial branch is unstable and system experiences a transition towards the stable �0

branch whereas, in the latter case, the system stabilizes along the branch �3, consistently
with theoretical predictions.

4.2 Subcritical regime

Numerical investigations carried out in the subcritical regime make use of the following
parameters: water-to-plant diffusion ratio d = 103 and rainfall A = 0.02. These param-
eters provide a critical value of plant loss Bc = 9.378 × 10−3, critical wavenumber
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qc = 5.62 × 10−2 and Landau coefficient L = −5.69 × 10−5 < 0. As can be noticed,
the much smaller value of critical wavenumber suggests that the excited wavelengths are
much larger than those observed in the supercritical regime, consistently with previous results
[19]. For this reason, the computational domain has been enlarged to D = 1000. Moreover,
since subcritical pattern dynamics are expected to occur over much longer timescales, the
spatio-temporal evolution is observed over a wider time window t ∈ [2 × 105].

Two main considerations can be drawn from the bifurcation diagram obtained in the sub-
critical regime, shown in Fig. 3. First, the primary branch undergoes a subcritical bifurcation
at B0 (corresponding to ζ = Q2

0) where two unstable periodic branches originate from
the conductive states, become stable at the Eckhaus threshold BE,0 < B0 and still survive
for B > B0 (ζ > Q2

0). Second, the secondary branches (n ≥ 1) undergo a restabilizing
bifurcation for BE,n > Bn (ζE,n > ζn).

Therefore, two striking features appearmarkedly in contrast with the analysis developed in
the framework of cubic GL equation: the existence of periodic solutions beyond the predicted
threshold and the occurrence of restabilizing bifurcations for higher order branches too.
Evidently, weakly nonlinear analysis developed in Sect. 3.2 fails to describe this phenomenon
as it is based on the assumption that pattern amplitude behaves as O(ε) close to onset. The
approachbasedon cubicGLequation appears to be, thus, not suitable to predict the occurrence
of restabilizing bifurcations at large amplitudes, whose description requires weakly nonlinear
expansion to be pushed forward to higher orders, as done in Sect.3.2.

The features exhibited by the bifurcation diagram in Fig. 3 are, indeed, fully compatible
with results obtained in the framework of cubic–quintic GL equation (summarized in Table
3). Several considerations may be addressed on this point. First of all, the occurrence of
Eckhaus instability on the primary branch at ζE,0 < Q2

0 confirms that the numerically-
computed value of the coefficient R̃ is negative and fulfills the restriction (40). Moreover,
the secondary branches originating from the unstable conductive state do exhibit Eckhaus
re-stabilizing bifurcations for values of the control parameter larger than existence threshold,
i.e. BE,n > Be,n . Furthermore, each n-th order branch undergoes exactly (n − 1) secondary
unstable bifurcations (as in the supercritical regime), in agreement with the numerical values
of the coefficient k∗

n that always fall in the range n < k∗
n < n + 1.

Let us finally comment that the bifurcation diagram drawn in Fig. 3 has been computed
for different inertial times (by varying them over different order of magnitudes) obtaining

Fig. 3 Diagram of the first three
subcritical bifurcating branches.
The bifurcation points of the
conductive branch Bn are
indicated in the bottom part of the
figure, whereas the Eckhaus
thresholds BE,n are shown in the
top part
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Table 5 Comparison between theoretically-estimated and numerically-computed bifurcation points for the
first three periodic branches characterizing the subcritical regime

Branch k∗
n BP Theoretical Theoretical Numerical

(cubic)×10−5 (quintic)×10−5 ×10−5

�0 0.8 Be,0 939 938 938

BE,0 938 938 938

B0 939 939 940

�1 1.9 Be,1 942 939 939

B1 942 942 943

BE,1 − 940 940

�2 2.4 Be,2 945 941 942

B2 945 945 947

B2,2 − 948 957

BE,2 − 949 960

identical results, so verifying the independence of existence and Eckhaus thresholds on iner-
tial effects. The theoretical values of Eckhaus threshold of the first three branches originating
from the conductive state arising from cubic and quintic analysis are reported in Table 5. The
previous theoretical values are then compared to the numerical ones, obtaining a satisfying
agreement in all cases. Of course, theoretical values deviate away from numerical ones as
far as the dimensionless distance from the threshold is increased, as expected from weakly
nonlinear approximation.

Let us now inspect the spatio-temporal evolution of patterns resulting from variation of the
control parameter B along the different branches characterizing the bifurcation diagram of
Fig. 3. To achieve this goal, the governing system is integrated numerically by using the same
boundary and initial conditions as the ones adopted in the supercritical regime. Results of this
analysis are shown in Fig. 4. According to the previous values of critical parameters together
with the scaling of variables (32), the dimensionless value of critical wavenumber becomes
Qc = 17.89. Therefore, the finite geometry shall select a primary mode with wavenumber
Qc + Q0 = 18, i.e. the computational domain shall accommodate D = 9�. Indeed, by
choosing a value BE,0 < B < B0, starting from a small perturbation of the branch �0, the
primary branch results to be stable even for values of the control parameter smaller than the
primary bifurcation threshold, so confirming the subcritical character (see Fig. 4a). Let us
now set the initial condition as a small perturbation of the branch �1, which is characterized
by Qc + Q1 = 17 and D = 8.5�, and choose a control parameter which falls into the range
B1 < B < BE,1 or BE,1 < B < B2, i.e. respectively slightly below or above the Eckhaus
threshold of the first secondary branch (predicted by quintic GL equation). Results reveal
that, in the former case, the system undergoes a phase slip and finally converges towards the
stable�0 branch (see Fig. 4b). In the latter case, the system remains on the stable�1 branch,
proving the occurrence of a restabilizing bifurcation (see Fig. 4c). The instability of the last
secondary branch for values smaller than Eckhaus threshold can be proved by setting the
initial condition as a small perturbation of �2 (Qc + Q2 = 19 and D = 9.5�) and choosing
B2 < B < BE,2. As shown in Fig. 4d, the system selects a different wavelength and stabilizes
along the stable �0 branch. On the contrary, if the control parameter is chosen in such a way
that B > BE,2, no phase slips occurs and the system stabilizes on the �2 branch, as depicted
in Fig. 4e. In all cases, results agree with theoretical predictions developed in Sect. 3.2.1.
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Fig. 4 Spatio-temporal evolution of subcritical pattern dynamics obtained integrating numerically the hyper-
bolic Klausmeier model (1), (2) with the following parameter set: D = 1000, A = 0.02, d = 103, μ0 = 105,
γ0 = 1.1. The control parameter B is varied as follows: a BE,0 < B < B0, b B1 < B < BE,1, c
BE,1 < B < B2, d B2 < B < BE,2 and e B > BE,2. The different initial conditions here used are specified
in the main text

Let us finally comment that all the simulations reported in this section have been obtained
by integrating numerically the hyperbolic model by using μ0 = 105 and γ0 = 1.1, that
represent a good approximation of the behavior close to the parabolic limit in the subcritical
regime. In the next section, the behavior far away from the parabolic limit is explored in more
detail.

4.3 Spatio-temporal dependence of phase slip

Let us characterize more deeply the phenomenon of phase slip taking place during Eckhaus-
driven dynamics, with more emphasis on the role played by hyperbolicity.

As previously mentioned [5, 18, 41, 42], a phase slip may be defined as a solution of the
GL equation whose zeros of the pattern amplitude |�(x, t)| vary as a function of space and
time. Let us call tsli p and xslip , respectively, the first time instant and the spatial location at
which such an event takes place. Due to the impossibility to predict these values theoretically,
ad-hoc numerical investigations are performed with the twofold aim of: (i) elucidating how
inertial times may affect this phenomenon in the supercritical and subcritical regimes and
(ii) establishing strategies to control these quantities independently of each other.

Let us now investigate how the time and the space at which phase slip takes place depend
on the model parameters and the initial conditions. In this context it will be emphasized how
inertial times represent, effectively, additional degrees of freedom that may be used to enrich
the scenario of transient dynamics. Indeed, in the parabolic version of the Klausmeier model
[28–31], the linearized problem giving rise to Turing threshold is completely determined by
all model parameters, i.e. A, B and d , as deduced in (4), (5). These parameters also specify
the stationary amplitude of each branch of quantized periodic state. Consequently, no free
parameters are available to characterize the evolution of the system during the transient
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Fig. 5 Spatio-temporal evolution of patterns deduced from numerical integration of the hyperbolic model.
The common parameters are: D = 200, A = 2.8, d = 1000, γ0 = 100 and Be,2 < B < BE,2. The parameter
μ0 is varied as follows: a μ0 = 100, b μ0 = 150, c μ0 = 350, d μ0 = 500 and e μ0 = 105

regime. On the contrary, in the hyperbolic extension (1), (2), (42) it is possible to manage
two extra parameters, i.e. γ0 and μ0, that are strictly correlated to the inertial times of the
involved species and that are always present in any physical system. As shown in the previous
sections, changes applied to inertial times do not yield any variation of existence and stability
thresholds, but it is expected that they play a relevant role during transient regime.

To this aim, let us integrate numerically the hyperbolic system by fixing the parameters A,
B, d and γ0, and varying the phenomenological coefficientμ0. In the first set of investigations,
the parameters are chosen in such a way dynamics fall into the supercritical regime. In
particular, the plant loss is chosen in the range Be,2 < B < BE,2 and the initial condition
is set as small perturbation of the unstable branch �2, so that the system is expected to
undergo an Eckhaus-driven transition towards the stable branch �1 (as depicted in Fig. 2d).
Results are shown in Fig. 5 where μ0 is varied from 102 to 105. It can be noticed that, as
the parameter μ0 increases, the phase slip takes place earlier, leaving its spatial location at
the edges of the domain unaltered. Moreover, dynamics reported from (e) to (a) represent
progressive deviations from the parabolic limit and allow to appreciate how much longer
transient regimes may be experienced by varying a single inertial-related parameter.

To describe in more detail the control of the only time to phase slip, let us characterize its
functional dependence. From the numerical standpoint, keeping in mind (6)2 and (A.13), an
useful way to approximate the occurrence of a zero of pattern amplitude consists of searching
where and when the current state U(x, t) crosses the steady-state US . To check the validity
of the previous statement, let us depict the trajectory followed by the field variables from the
initial stateUin (taken as small perturbation of the unstable�2 branch) towards the stationary
patterned state Uend (stable patterned branch �0). As illustrative examples, the trajectories
corresponding to three different values of μ0 = 20, 102 and 105 are shown in Fig. 6a for
the supercritical regime, whereas those corresponding to μ0 = 102, 103 and 105 for the
subcritical one are depicted in Fig. 7a. It is found that, independently of the value of μ0, all
the trajectories cross the steady homogeneous state US at the same location: xslip = 84 in

123



   57 Page 20 of 32 Partial Differential Equations and Applications             (2022) 3:57 

Fig. 6 a, b Numerically-computed trajectories u(xslip, t) corresponding to supercritical dynamics from a
small perturbation of the unstable �2 branch (Uin) towards the stable patterned �0 branch (Uend), crossing
the homogeneous stateUS . Fixed parameters: Be,2 < B < BE,2, d = 103, A = 2.8 and γ0 = 102. Variables:
μ0 = 20 (solid blue line), μ0 = 102 (dashed red line) and μ0 = 105 (dotted black line). In b, green squares

represent the time at which phase slip occurs. c Plot of log(tsli p) as a function of −log(λ
(1)
2 ). Black squares

represent results of numerical simulations for different value of μ0, the solid red line denotes the linear fit
(color figure online)

Fig. 7 Panels, lines and symbols have the samemeaning as in Fig. 6, but dynamics falls into subcritical regime.
Fixed parameters: B2 < B < BE,2, d = 103, A = 0.02 and γ0 = 1.1. Variables: μ0 = 102, μ0 = 103 and
μ0 = 105

the supercritical regime and xslip = 276 in the subcritical one. Such an intersection occurs
at longer times as the phenomenological parameter μ0 is reduced, as denoted by the green
squares in Figs. 6b and 7b, and consistently with the meaning of inertial time.

The above observations suggest to correlate the time to phase slip tsli p with the linear

growth rate λ
(1)
n (see expressions (26) and (37)). Indeed, once the growth factor is recasted

in the original time variables, say λ
(1)
n , one argues that it depends linearly on the parameters

ν (in the supercritical regime) or ν (in the subcritical one), which both bring the contribution

from inertia. Indeed, by plotting the dependence of tsli p as a function of λ
(1)
n , with n = 2,

two different linear relationships are retrieved in log-log scale, as depicted in Fig. 6c for
the supercritical regime (with adjusted r-squared value r2a = 0.999), and in Fig. 7c for the
subcritical one (r2a = 0.995). These results confirm that the time to phase slip tsli p , close to

onset, is strictly related to the linear growth rate λ
(1)
n in both dynamical regimes.

Notice that the above analysis is carried out by considering values of inertial times falling
either in the ranges τ u < τw and τw < τ u , obtaining the same functional dependence.
However, the different signs of the proportionality coefficients deduced in the linear fits
indicate that the time to phase slip is negatively correlated with the linear growth rate in the

supercritical regime [40], i.e. tsli p ∝∼
(

λ
(1)
2

)− 1
2

, whereas it is positively correlated in the

subcritical one [18], i.e. tsli p ∝∼
(

λ
(1)
2

) 1
2

.

Results described so far pointed out that the time at which phase slip occurs may be
controlled by the linear growth rate, leaving the location unchanged. Let us now inspect
whether it is possible to find a strategy to get the opposite scenario, namely the possibility to
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Fig. 8 The control of the spatial location of phase slip. a Schematics of the initial conditions, where xde f
denotes the location of a defect and a its amplitude.bScatterplot representative of the relationship xslip

(
xde f

)
,

where symbols represent results of numerical simulations, the solid line is the computed best linear fit. The
amplitude of the defect is set to a = 50

Fig. 9 Spatiotemporal evolution of patterns with a localized defect in the initial conditions. Parameters are:
D = 200, A = 2.8, d = 103, Be,2 < B < BE,2, γ0 = 100, μ0 = 105, a = 50 and a xde f = 80 b
xde f = 100 c xde f = 120

modulate the location xslip at which wavelength adjustment takes place leaving the time to
phase slip unaltered. To this aim, since perfectly-periodic initial conditions may represent an
idealization of the reality, let us consider an ecologically-realistic scenario where a defect,
localized at x ≡ xde f with amplitude a, is present in the initial data, as shown schematically
in Fig. 8a. Let us then build the scatterplots representative of location xslip to phase slip as a
function of defect position xde f , obtained for a = 50. Results shown in Fig. 8b reveal that the
spatial location of phase slip can be modulated linearly (r2a = 0.999) by varying the defect
position, leaving the time to phase slip almost unchanged. To confirm the above statements,
in Fig. 9 some examples of spatiotemporal evolution of patterns obtained for three different
locations of a large defect are depicted. As it can be noticed, the time to phase slip is kept
almost fixed at t � 350.

Therefore, the numerical investigations here proposed suggest different strategies to con-
trol, separately, the time and the spatial location at which phase slip takes place.

5 Conclusions

In this paper, a theoretical study on the EI of stationary patterns in a hyperbolic reaction–
diffusion system defined over a large finite domain was addressed in the supercritical and
subcritical regimes. To this aim, linear and weakly nonlinear analysis were first addressed
to deduce the equations governing the pattern amplitude close to criticality. Then, the bifur-
cation analysis of the EI was carried out to describe existence and stability thresholds of all
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bifurcating branches. Finally, the above analytical predictions were validated by comparison
with results of numerical simulations performed on a conceptual model of interest in dry-
lands ecology, the modified Klausmeier model, where stationary vegetation patterns emerge
over flat arid terrains. These numerical investigations also allowed to get some insights into
the phenomenon of phase-slip.

The main results can be summarized as follows:
(i) It was shown that, while the cubic real GL equation (12) describes satisfactorily well the

features associated to primary and secondary branches of periodic solutions in the supercriti-
cal regime, it is not able to predict the proper range of existence of such periodic solutions as
well as the restabilizing mechanism that n-th order secondary branches, with n ≥ 1, undergo
in the subcritical regime. The above restrictions were overcome by pushing weakly nonlin-
ear analysis up to the fifth order, where the resulting envelope equation takes the form of
cubic–quintic GL equation (15). To achieve this goal, it was necessary to deduce the explicit
expressions of the main properties of primary and secondary quantized periodic branches

(stationary amplitude�n , existence ζe,n and stability ζE,n thresholds, linear growth rate λ
(1)
n )

characterizing the bifurcation diagram in the subcritical regime in the framework of quintic
GL equation. All these quantities were collected in Tables 1–3. This approach provided the
complete description of all (n ≥ 0) periodic branches appearing in the bifurcation diagram
of subcritical modes, as can be noticed from the comparative theoretical-numerical results
reported in Tables 4 and 5.

(ii) From the inspection of numerically-computed bifurcation diagrams (see Figs. 1, 3)
and spatio-temporal evolution of patterns (see Figs. 2, 4), it was obtained the twofold goal of:
validating the theoretical predictions arising from multiple-scale weakly-nonlinear analysis
and elucidating the role played by inertial effects that are always present in any physical
system. From the theoretical viewpoint, in particular, it was shown that hyperbolicity affects
the expression of the linear growth rate but leaves the other quantities (stationary amplitude,
existence and stability thresholds) unchanged. This result suggested that the hyperbolicmodel
provides additional degrees of freedom that may be used to better characterize transient
regimes, in particular the transition from an Eckhaus-unstable state towards a more favorable
stable configuration through sequences of phase-slips.

(iii) The functional dependence of time and location at which wavelength adjustment
takes place is investigated numerically with the main goal of finding strategies to control
these quantities independently of each other. Our results revealed that the time to phase slip
may be modulated by varying the inertial times leaving its location unaltered. Moreover, it

was shown that tsli p strongly depends upon the linear growth rate λ
(1)
n , in both dynamical

regimes (as depicted in Figs. 6 and 7). In particular, results indicate that tsli p and λ
(1)
n are

negatively correlated in the supercritical regime but positively in the subcritical one. On the
other hand, it was numerically shown that, by considering a localized defect into the initial
conditions, it is possible to modulate the location to phase slip leaving the time to phase slip
almost unchanged (see Figs. 8 and 9).

In future works, it is planned to extend bifurcation analysis of EI to the case of oscillatory
periodic patterns in the more general framework of hyperbolic reaction–advection–diffusion
models, where the instability thresholds are remarkably affected by inertial effects and pattern
amplitude close to onset is ruled by complex GL equations.
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Appendix

In this Appendix we provide the expressions of the quantities involved in linear and weakly
nonlinear analysis for the specific case of the hyperbolic modified Klausmeier model:

⎡
⎢⎢⎣

u
w

J u

Jw

⎤
⎥⎥⎦

t

+

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
γ0 0 0 0
0 μ0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w

J u

Jw

⎤
⎥⎥⎦

x

=

⎡
⎢⎢⎣

u2w − Bu
A − u2w − w

−γ0 J u

−μ0
d Jw

⎤
⎥⎥⎦ . (A.1)

As already mentioned, the plant mortality B is taken as the main control parameter.
If A ≤ 2B, the model admits only a steady state of desert-type:

UD = (0, A, 0, 0), (A.2)

while, if A ≥ 2B, it also admits two states representative of spatially-homogeneous vegetated
regions:

UL = (uL , wL , 0, 0),

US = (uS, wS, 0, 0),
(A.3)

where uL =
(

A − √
A2 − 4B2

)
/(2B), uS =

(
A + √

A2 − 4B2
)

/(2B), wL = B/uL ,

wS = B/uS , with uL < 1 < uS .
Moreover, in themodel under investigation, the only non-zero partial derivatives of kinetics

terms take the form:

f ∗
u = B, f ∗

w = u2
S, g∗

u = −2B, g∗
w = − (

1 + u2
S

)
,

f ∗
uu = 2B/uS, f ∗

uw = 2uS, g∗
uu = −2B/uS, g∗

uw = −2uS,

f ∗
uuw = 2, g∗

uuw = −2. (A.4)

Linear stability analysis reveals that the states UD and UL are always stable and unstable,
respectively. On the other hand, the state US is found to be stable against spatially-uniform
perturbations if:

B − 1 − u2
S < 0,

B
(
u2

S − 1
)

> 0,
(A.5)
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that are always fulfilled since realistic values of plant loss B are in the range (0, 2) [54] and
uS > 1. The state US is also stable under non-homogeneous perturbations if:

{
d B − (

1 + u2
S

)
< 0(

d B − 1 − u2
S

)2 − 4d B
(
u2

S − 1
)

< 0
(A.6)

When conditions (A.6) are violated, Turing patterns [2] may originate as a consequence of
destabilization of the state US . From (4), (5), the critical values of control parameter Bc and
wavenumber qc at the onset of Turing instability read:

Bc =
3u2

Sc
− 1 + 2uSc

√
2
(

u2
Sc

− 1
)

d
, (A.7)

q2
c =

√√√√ Bc

(
u2

Sc
− 1

)

d
, (A.8)

being uSc =
(

A +√
A2 − 4B2

c

)
/ (2Bc).

Let us now focus on the results of weakly nonlinear analysis. Applying expansions

B = Bc + ε2B2 + ε4B4 + O(ε6),

U = εU1 + ε2U2 + ε3U3 + ε4U4 + ε5U5 + O(ε6),
(A.9)

in the model (A.1) and collecting the terms of the same orders of ε, the set of linear equation
(8) is obtained.

Taking into account (A.4), (A.7), (A.8), thematrix K ∗
c , defined in (10), admits two complex

eigenvalues ∓iqc with algebraic and geometric multiplicity given by 2 and 1, respectively.
By introducing the invertible transform matrix P and the Jordan canonical form ϒ of K ∗

c ,
the general solution of (8)1 can be expressed as:

U1 = Peϒx P−1C1, (A.10)

being:

P =

⎡
⎢⎢⎣

iY1 r1 − iY1 r1
iY2 r2 − iY2 r2
Y3 ir3 Y3 − ir3
Y4 ir4 Y4 − ir4

⎤
⎥⎥⎦ , ϒ =

⎡
⎢⎢⎣

iqc 0 0 0
1 iqc 0 0
0 0 − iqc 0
0 0 1 − iqc

⎤
⎥⎥⎦ , (A.11)

where the vectorC1(X , T2, T4) is determined by boundary conditions and removal of secular
terms, whereas ri and Yi (i = 1, ..., 4) are the components of simple and generalized right
eigenvectors of K ∗

c , given by:

r1 = 1, r2 = r1
(
q2

c − Bc
)
/u2

Sc
, r3 = −qcr1, r4 = −dqcr2,

Y1 = 2qcr1
q2

c −Bc
, Y2 = 0, Y3 = qcY1 − r1, Y4 = −dr2.

(A.12)

The solution at the first perturbative order, satisfying zero-flux boundary conditions, reads

U1 = Re{� r eiqc x }, (A.13)

being r = [r1, r2, ir3, ir4]T .
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On the other hand, the general solution of nonhomogeneous equations (8)2-(8)5 can be
expressed as

U j = Peϒx P−1C j + Peϒx
∫

e−ϒx (M P)−1 F̃ j dx j = 2, ..., 5, (A.14)

being C j the vector of arbitrary constants and the vectors F̃ j ( j = 2, ..., 5) are given in (9).
From the removal of secular terms at the third perturbative order, we get the real cubic

GL equation
∂�

∂T2
= σ� − L|�|2� + ν

∂2�

∂ X2 , (A.15)

where the real coefficients σ , L and ν are given by:

σ = B2[2u2
Sc

(1 + u2
Sc

)r(1 + dr) + Bc(1 − u2
Sc

)(2 + dr)]
Bcr(1 − u2

Sc
)
[
d − 1 + q2

c d
(

d
μ0

− 1
γ0

)] ,

L = − (6r + 8α + 4β)(1 + dr)

8r
[
d − 1 + q2

c d
(

d
μ0

− 1
γ0

)] ,

ν = 4dq2
c(

Bc − q2
c

) [
d − 1 + q2

c d
(

d
μ0

− 1
γ0

)] , (A.16)

with

r = q2
c − Bc

u2
Sc

, α =
(

Bc + 2ru2
Sc

)[
ru2

Sc
+ Bc

(
1 − u2

Sc

)]

Bcu2
SC

(
u2

Sc
− 1

) ,

β =
(

Bc + 2u2
Sc

r
)[

Bc(1 + 4dq2
c ) + u2

Sc

(
r − Bc − 4q2

c (1 − dr)
)]

9Bcu2
Sc

(
u2

Sc
− 1

) .

(A.17)

After that, removing secular terms at O(ε4), the following compatibility equation is
obtained:

k1�X X X + k2|�|2�X + k3�X = 0, (A.18)

where

k1 = 4dqcν(γ0l4r1 − l3μ0r2) − 4dγ0μ0 [qc(ω12r2 − ω22r1) + r2(ω32 + l1ν)]

+ 4γ0μ0r1(ω42 + l2ν),

k2 = γ0μ0d[r1r2(2l1r2 + l2r1) + 4r2uSc (ω14r2 + ω24r1 − l1m2 − l2m1 + 2l1n2 + 2l2n1)

+ 12r2(Ll1 − ω31) + 12qc(ω21r1 − ω11r2) + 4r2wSc (ω14r1 − l1m1 + 2l1n1)]
+ γ0μ0[12r1(ω41 − Ll2) + 4r1uSc (2l2n1 + 2l1n2 − l2m1 − l1m2 + ω14r2 + ω24r1)

+ 4r1wSc (2l1n1 − l1m1 + r1ω14) + r21 (l2r1 + 2l1r2)] + 12Lqcd(l3r2μ0 − l4r1γ0),

k3 = 4γ0μ0{σ(l2r1 − dl1r2) + r1(ω40 + dqcω20)

+ B2
[
r1(2l1 + 2uSc δ1l2) + dr2(l1 + 2uSc δ1l2)

]

+ −dr2(ω30 + qcω10)} + 4dqcσ(γ0l4r1 − l3μ0r2), (A.19)

being wSC = Bc/uSc , δ1 = uSc

(
1 + u2

Sc

)
/
[

Bc

(
1 − u2

Sc

)]
and

ω10 = B2
{

E1
(
r1 + 2r2uSc δ1

)+ r21
[
2r1qc (μ0 − γ0d) + μ0Y1

(
q2

c + γ0
)]}

4q2
c r2Y1

[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
] ,
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ω20 = B2
(
r1 + 2r2uSc δ1

) {
r1E1 + 2qcY 2

1

[
γ0μ0 (r1 + r2) − q2

c

(
γ0d2r2 + μ0r1

)]}

4q2
c r21Y1

[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
]

+ B2
{
2r21qc (μ0 − γ0d) + r1μ0Y1

(
q2

c + γ0
)+ 2qcμ0Y 2

1

(
γ0 − q2

c

)}

4q2
c Y1

[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
] ,

ω30 = B2
{(

r1 + 2r2uSc δ1
) [

E1 − 4q2
c μ0Y1 (r1 + dr2)

]+ r21
[
2r1qc (μ0 − γ0d) + μ0Y1

(
γ0 − 3q2

c

)]}

4qcr2Y1
[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
] ,

ω40 = d B2
(
r1 + 2r2uSc δ1

) {
r1E1 + 2qcY 2

1

[
γ0μ0 (r1 + r2) − q2

c

(
γ0d2r2 + μ0r1

)]− 4dq2
c γ0r1Y1 (r1 + dr2)

}

4qcr21Y1
[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
]

+ d B2
{
r21
[
2qcμ0Y 2

1

(
γ0 − q2

c

)+ r1μ0Y1
(
q2

c + γ0
)+ r21qc (μ0 − γ0d)

]− 4dq2
c γ0r1Y1

(
r21 + r1 + dr2

)}

4qcr21Y1
[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
] ,

ω11 =
(
6r21 r2 + 8q1 + 4s1

)
E1

32q2
c r2Y1

[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
] + r1

r2
c3,

ω21 =
(
6r21 r2 + 8q1 + 4s1

) {
r1E1 + 2qcY 2

1

[
γ0μ0 (r1 + r2) − q2

c

(
μ0r1 + d2γ0r2

)]}

32Y1q2
c r21

[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
] + c3,

ω31 =
(
6r21 r2 + 8q1 + 4s1

) [
E1 − 4q2

c μ0Y1 (r1 + dr2)
]

32Y1qcr2
[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
] + qcr1

r2
c3,

ω41 = d
(
6r21 r2 + 8q1 + 4s1

) {
r1E1 − 4dq2

c r1γ0Y1 (r1 + dr2) + 2qcY 2
1

[
γ0μ0 (r1 + r2) − q2

c

(
μ0r1 + d2γ0r2

)]}

32Y1qcr21
[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
]

+dqcc3,

ω12 = − 2r21 (μ0 + dγ0) p42 + Y1dqc
(
q2

c p12 − γ0 p42
)
(2qcY1 + r1) + μ0Y1 (qc p22 − γ0 p32) (Y1 − r1)

4Y1q2
c r1r2

[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
]

− 2γ0r21 (Y1qc − r1) (dqcl4 − l2μ0) + 2μ0r2dr1 (γ0l1 − l3qc)

4Y1q2
c r1r2

[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
] ,

ω22 = − (2r1 − Y1qc) (γ0dp42 + μ0 p22) − μ0Y1 (qcr1 p22 − γ0 p32) + 2γ0r1 (Y1qc − r1) (dqcl4 − l2μ0)

4Y1q2
c r1

[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
]

− 2μ0r2dr1 (γ0l1 − l3qc) + Y1dq3
c (r1 − 1)p12

4Y1q2
c r1

[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
] ,

ω32 = −
Y1dq3

c (2qcY1 − 3r1) p12 + μ0
[
Y1qc (Y1 − r1) + 10r21

]
p22 − γ0μ0Y1 (Y1 − 5r1)

p32 + 10μ0r2dr1 (γ0l1 − l3qc)

4Y1qcr1r2
[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
]

− 10γ0r1 (Y1qc−r1) (dqcl4−l2μ0) −γ0d
[
Y 2
1 qc−5r1 (2r1−Y1qc)

]
p42+4μ0r2Y1dqcr1 (l3qc+γ0l1)

4Y1qcr1r2
[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
] ,

ω42 = −
dγ0 (3Y1qc + 2r1) p42 − 3Y1dq3

c p12 − 2γ0 (Y1qc + r1) (dp22 + p12) + μ0 (Y1γ0 + 2dr1qc)

p32 − μ0 [Y1qc + 2r1 (d − 1)] p22

4Y1qcr1
[
γ0μ0 (d − 1) + dq2

c (γ0d − μ0)
] ,

ω13 = −
(
6r21 r2 + 12s1

) [
dr2 (r1 − 4Y1qc) + r21

]

768dq3
c r2Y1

,

ω23 = −
(
6r21 r2 + 12s1

)
[dr2 + 4Y1qc + r1]

768dq3
c Y1

,

ω33 = 3qcω13,

ω43 = 3dqcω23,

ω14 = − 2r1 [p14 (r1 + dr2) − 2dr2 p24 + 2r1 p34] − 3Y1dqcr2 (p14 − 2p24)

9Y1dq3
c r2

,

ω24 = − 2 [p14 (r1 + dr2) − 2dr2 p24 + 2r1 p34] + 3Y1qc (p14 + 2p34)

9Y1dq3
c

,

ω34 = − 2 (qcω14 + m1) ,
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ω44 = − 2d (qcω24 + m2) ,

ω35 = − 2n1,

ω45 = − 2dn2,

E1 = 2qcr1 (μ0−γ0d) (r1+dr2)+Y1
[
γ0μ0 (r1+r2)+μ0q2

c (r1+dr2)+dq2
c r2 (μ0−γ0d)

]
,

q1 =
r1
(

Bcr1 + 2u2
Sc

r2
) [

r2u2
Sc

+ Bcr1
(
1 − u2

Sc

)]

Bcu2
Sc

(
u2

Sc
− 1

) ,

s1 =
r1
(

Bcr1 + 2u2
Sc

r2
) [

Bcr1
(
1 + 4dq2

c

)+ u2
Sc

(
r2 − Bcr1 − 4q2

c (r1 − dr2)
)]

9Bcu2
Sc

(
u2

Sc
− 1

) ,

p12 = γ0l1r2d − μ0l2r1,

p22 = l4qcr1 − γ0l1r2,

p32 = l4r1 − l3r2,

p42 = l3r2dqc − l2μ0r1,

p14 = l1r2uSc + r1
(
l2uSc + l1wSc

)
,

p24 = m3 + 2m1qc,

p34 = m4 + 2m2dqc.

n1 =
r1
(

Bcr1 + 2u2
Sc

r2
)

2BcuSc

(
u2

Sc
− 1

) ,

n2 = − Bcn1,

m1 = 1 + 4dq2
c

9
n1,

m2 = − Bc + 4q2
c

9
n1,

m3 = 2qcm1,

m4 = 2dqcm2,

l1 = − l3 + r1
qc

,

l2 = − r2 (r1 − Y1qc + l3)

qcr1
,

l4 = dr2 (l3 − Y1qc)

r1
. (A.20)

Finally, l3 and c3 are implicitly given by

8h1 (3Lk1 + νk2) + γ0μ0k1h0{4wSc [l1ω14 + r1ρ12 + 2r1ρ10] + l1 (l1r2 + 2l2r1) +
+4uSc [l1ω24 + l2ω14 + r2ρ12 + r1ρ22 + 2 (r1ρ20 + r2ρ10)]} +
+8γ0μ0k1 [dqc (ψ11r2 − ψ21r1) + ψ41r1 − dψ31r2] = 0,

(4k2ν + 12Lk1)h1 − 4γ0μ0k1[dψ31r2 − ψ41r1 + dqc(ψ21r1 − ψ11r2)] +
−12k1ν([γ0μ0(dω11r2 − ω21r1) + dqc(γ0ω41r1 − μ0ω31r2)] +
+γ0μ0k1h0{3r1(2ω12r2 + ω22r1) + 4r1wSc (τ12 + 2τ10)
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+4uSc [r1(τ22 + 2τ20) + r2(τ12 + 2τ10)] +
+4ω12uSc (m2 + 2n2) + 4(m1 + 2n1)(ω22uSc + ω12wSc )} = 0, (A.21)

where h0 = dr2 + r1 and h1 = γ0μ0 (dω12r2 − ω22r1) + dqc (γ0ω42r1 − μ0r2ω32).
Then, pushing weakly nonlinear analysis up to the fifth perturbative order, the removal of

secular terms leads to the real cubic–quintic GL equation:

∂�

∂T
= σ� − L|�|2� + R|�|4� + ν

∂2�

∂ X2 , (A.22)

where σ = σ + ε2σ̃ , L = L + ε2 L̃ , ν = ν + ε2ν̃ and R = ε2 R̃, being the second-order
corrections given by

σ̃ =
γ0μ0

{
h0
[
4uScδ1 (B4r2 + B2ω20) + B2

2δ3r2
]+ 2 (h0 + r1) (ω10B2 + r1B4)

}
+2σ

[
γ0μ0 (dω10r2 − ω20r1) + dqc (γ0ω40r1 − μ0ω30r2)

]

2r1r2
[
γ0μ0 (d − 1) + dq2

c (dγ0 − μ0)
] ,

L̃ =
γ0μ0

{
12σ(ω21r1 − dω11r2) + (r1 + dr2)

[
4(2ζ10 + ζ12)(r2uSc + r1wSc )

+4B2[2uScδ1ω21 + δ1r1(m2 + 2n2)]
4r1r2

[
γ0μ0 (d − 1) + dq2

c (dγ0 − μ0)
]

+
4[ω10wSc + B2(δ1r2 + δ2r1)](m1 + 2n1) + 4uSc (m2ω10 + m1ω20)

+8uSc (n2ω10 + n1ω20) + 3r1(2ω10r2 + ω20r1) + 4r1uSc (2ζ20 + ζ22)
]

4r1r2
[
γ0μ0 (d − 1) + dq2

c (dγ0 − μ0)
]

+
4B2ω11(2r1 + dr2) − 4L(ω20r1 − dω10r2)

}+ 4Ldqc(γ0ω40r1 − μ0ω30r2)
−12dqcσ(γ0ω41r1 − μ0ω31r2)

4r1r2
[
γ0μ0 (d − 1) + dq2

c (dγ0 − μ0)
] ,

R̃ =
12Ldqc(ω31r2μ0 − ω41r1γ0) − γ0μ0

{
12L(dω11r2 − ω21r1)

+4r21 [n2(2n1 + m1) + m2(m1 + n1)] + 4r1r2m1n1 + h0
[
r21 (ω23 + 3ω21)

4r1r2
[
γ0μ0 (d − 1) + dq2

c (dγ0 − μ0)
] +

+
4r1uSc (η22 + 2η20) + 2r2(m2

1 + 2n2
1) + 4m2uSc (ω13 + ω11) + 2r1r2(ω13 + 3ω11)

+4m1uSc (ω21 + ω23) + 8uSc (n2ω11 + n1ω21)

4r1r2
[
γ0μ0 (d − 1) + dq2

c (dγ0 − μ0)
]

+
4(η12 + 2η10)(r2uSc + r1wSc ) + 4wSc [m1(ω11 + ω13) + 2n1ω11]

]
+4d

[
m1r2(n1r2 + m2r1) + r1r2(m1n2 + m2n1 + 2n1n2)

]}

4r1r2
[
γ0μ0 (d − 1) + dq2

c (dγ0 − μ0)
] ,

ν̃ = B2γ0μ0k1
[
ω12 (h0 + r1) + 2uScδ1ω22h0

]− h1 (k1σ − k3ν)

k1r1r2
[
γ0μ0 (d − 1) + dq2

c (dγ0 − μ0)
]

−
k1
{
νdqc

[
γ0ω40r1 − μ0ω30r2

]+ μ0γ0
[
dqc (r1ρ21 − r2ρ11) + ν (dω10r2 − ω20r1)

+dr2ρ31 − r1ρ41
]}

k1r1r2
[
γ0μ0 (d − 1) + dq2

c (dγ0 − μ0)
] ,

where the coefficients here appearing are given implicitly by

ω14 + ρ32 − 2qcρ12 = 0,

k1l3 + γ0k1ω10 − γ0k3ω12 + γ0k1ρ31 + γ0k1qcρ11 = 0,

3k1ω11 − 9k1ω13 − k2ω12 + k1ψ31 − 3k1ψ33 + k1qcψ11 − 9k1qcψ13 = 0,

3ω13 + ψ33 + 3qcψ13 = 0,
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η34 − 4η14qc = 0,

2m3σ + γ0ζ32 − 2γ0qcζ12 = 0,

γ0ω14 + γ0τ32 + 2m3ν − 2γ0qcτ12 = 0,

η32γ0 − 2Lm3 − 2η34γ0 − 2η12γ0qc + 8η14γ0qc = 0,

ρ42 + dω24 − 2dqcρ22 = 0,

dk1l4 + k1μ0ρ41 + dk1μ0ω20 − dk3μ0ω22 + dk1qcμ0ρ21 = 0,

k1ψ41 − 3k1ψ43 + 3dk1ω21 − 9dk1ω23 − dk2ω22 + dk1qcψ21 − 9dk1qcψ23 = 0,

ψ43 + 3dω23 + 3dqcψ23 = 0,

η42μ0 − 2η44μ0 − 2Ldm4 − 2dη22qcμ0 + 8dη24qcμ0 = 0,

η44 − 4dη24qc = 0,

μ0ζ42 + 2dm4σ − 2dqcμ0ζ22 = 0,

μ0τ42 + 2dm4ν + dμ0ω24 − 2dqcμ0τ22 = 0,

2ω34uSc + Bcl21 − 2ρ22u3
Sc

+ 2l1l2u2
Sc

− 2Bcρ12uSc + 4qcρ32uSc = 0,

ω35uSc − ω34uSc − Bcl21 − ρ20u3
Sc

+ ρ22u3
Sc

− 2l1l2u2
Sc

− Bcρ10uSc + Bcρ12uSc − 2qcρ32uSc = 0,

−k1ρ21u2
Sc

+ k1l1 + k1ω30 − k3ω32 − B2k1l1 − Bck1ρ11 − k1qcρ31 − B22uSc δ1k1l2 = 0,

k1ψ23u3
Sc

− k1ψ21u3
Sc

+ 3k1ω31uSc − 3k1ω33uSc − k2ω32uSc − k1qcψ31uSc + 3k1qcψ33uSc +
+2k1l1m2u2

Sc
+ 2k1l2m1u2

Sc
− 2k1l1n2u2

Sc
− 2k1l2n1u2

Sc
+ 2Bck1l1m1 − 2Bck1l1n1 +

−Bck1ψ11uSc + Bck1ψ13uSc = 0,

12ω33uSc − 4ψ23u3
Sc

− 4l1m2u2
Sc

− 4l2m1u2
Sc

− l2r21uSc − 4ω14r2u2
Sc

− 4ω24r1u2
Sc

− 4Bcl1m1 +
−4Bcω14r1 − 4Bcψ13uSc − 12qcψ33uSc − 2l1r1r2uSc = 0,

16η34qcuSc − 4η24u3
Sc

− 4m1m2u2
Sc

− m2r21uSc − 4ω13r2u2
Sc

− 4ω23r1u2
Sc

− 4Bcη14uSc +
−4Bcω13r1 − 2Bcm2

1 − 2m1r1r2uSc = 0,

4Bcm2
1 − 2η22u3

Sc
+ 8η24u3

Sc
+ 8m1m2u2

Sc
− 4m1n2u2

Sc
− 4m2n1u2

Sc
+ m2r21uSc − n2r21uSc +

−2ω11r2u2
Sc

+ 6ω13r2u2
Sc

− 2ω21r1u2
Sc

+ 6ω23r1u2
Sc

− 2Bcη12uSc + 8Bcη14uSc − 4Bcm1n1 +
−2Bcω11r1 + 6Bcω13r1 − 4Lm1uSc + 4η32qcuSc − 32η34qcuSc + 2m1r1r2uSc − 2n1r1r2uSc = 0,

η22u3
Sc

− Bcn2
1 − η20u3

Sc
− Bcm2

1 − η24u3
Sc

− 2m1m2u2
Sc

+ 2m1n2u2
Sc

+ 2m2n1u2
Sc

− 2n1n2u2
Sc

−Bcη10uSc +Bcη12uSc −Bcη14uSc +2Bcm1n1+2Lm1uSc −2Ln1uSc − 2η32qcuSc + 4η34qcuSc = 0,

4m1σuSc − 2ω10r2u2
Sc

− 2ω20r1u2
Sc

− 2Bcω10r1 − 2B2m1uSc − 2BcuSc ζ12 − 2u3
Sc

ζ22 + 4qcuSc ζ32 +
−B2δ2r21uSc − 2B22uSc δ1m2uSc − 2B2δ1r1r2uSc = 0,

B2m1 − B2n1 − Bcζ10 + Bcζ12 − 2m1σ + 2n1σ − 2qcζ32 − u2
Sc

ζ20 + u2
Sc

ζ22 +
+B22uSc δ1m2 − B22uSc δ1n2 = 0,

ω34uSc − τ22u3
Sc

− ω12r2u2
Sc

− ω22r1u2
Sc

− Bcω12r1 − Bcτ12uSc + 2m1νuSc + 2qcτ32uSc = 0,

ω35 − ω34 − Bcτ10 + Bcτ12 − 2m1ν + 2n1ν − 2qcτ32 − τ20u2
Sc

+ τ22u2
Sc

= 0,

2ω44uSc + 2ρ22uSc − Bcl21 + 2ρ22u3
Sc

− 2l1l2u2
Sc

+ 4Bcρ12uSc + 4qcρ42uSc = 0,

ω45uSc − ω44uSc + ρ20uSc − ρ22uSc + Bcl21 + ρ20u3
Sc

− ρ22u3
Sc

+ 2l1l2u2
Sc

+ 2Bcρ10uSc +
−2Bcρ12uSc − 2qcρ42uSc = 0,

k1ρ21u2
Sc

+ k1l2 + k1ω40 − k3ω42 + k1ρ21 + 2B2k1l1 + 2Bck1ρ11 − k1qcρ41 + B22uSc δ1k1l2 = 0,

k1ψ21u3
Sc

− k1ψ23u3
Sc

+ 3k1ω41uSc − 3k1ω43uSc − k2ω42uSc + k1ψ21uSc − k1ψ23uSc − k1qcψ41uSc +
+3k1qcψ43uSc − 2k1l1m2u2

Sc
− 2k1l2m1u2

Sc
+ 2k1l1n2u2

Sc
+ 2k1l2n1u2

Sc
− 2Bck1l1m1 + 2Bck1l1n1 +

+2Bck1ψ11uSc − 2Bck1ψ13uSc = 0,

12ω43uSc + 4ψ23uSc + 4ψ23u3
Sc

+ 4l1m2u2
Sc

+ 4l2m1u2
Sc

+ l2r21uSc + 4ω14r2u2
Sc

+ 4ω24r1u2
Sc

+
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+4Bcl1m1 + 4Bcω14r1 + 8Bcψ13uSc − 12qcψ43uSc + 2l1r1r2uSc = 0,

4η24uSc + 2Bcm2
1 + 4η24u3

Sc
+ 4m1m2u2

Sc
+ m2r21uSc + 4ω13r2u2

Sc
+ 4ω23r1u2

Sc
+ 8Bcη14uSc +

+4Bcω13r1 + 16η44qcuSc + 2m1r1r2uSc = 0,

2η22uSc − 8η24uSc − 4Bcm2
1 + 2η22u3

Sc
− 8η24u3

Sc
− 8m1m2u2

Sc
+ 4m1n2u2

Sc
+ 4m2n1u2

Sc
+

−m2r21uSc + n2r21uSc + 2ω11r2u2
Sc

− 6ω13r2u2
Sc

+ 2ω21r1u2
Sc

− 6ω23r1u2
Sc

+ 4Bcη12uSc +
−16Bcη14uSc + 4Bcm1n1 + 2Bcω11r1 − 6Bcω13r1 − 4Lm2uSc + 4η42qcuSc − 32η44qcuSc +
−2m1r1r2uSc + 2n1r1r2uSc = 0,

η20uSc − η22uSc + η24uSc + Bcm2
1 + Bcn2

1 + η20u3
Sc

− η22u3
Sc

+ η24u3
Sc

+ 2m1m2u2
Sc

− 2m1n2u2
Sc

+
−2m2n1u2

Sc
+ 2n1n2u2

Sc
+ 2Bcη10uSc − 2Bcη12uSc + 2Bcη14uSc − 2Bcm1n1 + 2Lm2uSc +

−2Ln2uSc − 2η42qcuSc + 4η44qcuSc = 0,

2uSc ζ22 + 2u3
Sc

ζ22 + 2ω10r2u2
Sc

+ 2ω20r1u2
Sc

+ 2Bcω10r1 + 4B2m1uSc + 4BcuSc ζ12 + 4m2σuSc +
+4qcuSc ζ42 + B2δ2r21uSc + 2B22uSc δ1m2uSc + 2B2δ1r1r2uSc = 0,

ζ20 − ζ22 − 2B2m1 + 2B2n1 + 2Bcζ10 − 2Bcζ12 − 2m2σ + 2n2σ − 2qcζ42 + u2
Sc

ζ20 − u2
Sc

ζ22 +
−B22uSc δ1m2 + B22uSc δ1n2 = 0,

ω44uSc +τ22uSc +τ22u3
Sc

+ ω12r2u2
Sc

+ ω22r1u2
Sc

+Bcω12r1 + 2Bcτ12uSc + 2m2νuSc + 2qcτ42uSc = 0,

ω45 − ω44 + τ20 − τ22 + 2Bcτ10 − 2Bcτ12 − 2m2ν + 2n2ν − 2qcτ42 + τ20u2
Sc

− τ22u2
Sc

= 0

and δ2 = −2uSc/
(
1 − u2

Sc

)
.
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