We propose a new SCAD-type penalty in general regression models. The new penalty can be considered a competitor of the LASSO, SCAD or MCP penalties, as it guarantees sparse variable selection, i.e., null regression coefficient estimates, while attenuating bias for the non-null estimates. In this work, the method is discussed, and some comparisons are presented.

Daniele Cuntrera, Vito Muggeo, Luigi Augugliaro (2022). Variable selection with unbiased estimation: the CDF penalty. In Book of short papers (pp. 1835-1839).

Variable selection with unbiased estimation: the CDF penalty

Daniele Cuntrera
;
Vito Muggeo;Luigi Augugliaro
2022-01-01

Abstract

We propose a new SCAD-type penalty in general regression models. The new penalty can be considered a competitor of the LASSO, SCAD or MCP penalties, as it guarantees sparse variable selection, i.e., null regression coefficient estimates, while attenuating bias for the non-null estimates. In this work, the method is discussed, and some comparisons are presented.
2022
9788891932310
Daniele Cuntrera, Vito Muggeo, Luigi Augugliaro (2022). Variable selection with unbiased estimation: the CDF penalty. In Book of short papers (pp. 1835-1839).
File in questo prodotto:
File Dimensione Formato  
Sis-2022-Cuntrera-Muggeo-Augugliaro.pdf

Solo gestori archvio

Descrizione: Contributo completo
Tipologia: Versione Editoriale
Dimensione 130.38 kB
Formato Adobe PDF
130.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/570686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact