We propose a new SCAD-type penalty in general regression models. The new penalty can be considered a competitor of the LASSO, SCAD or MCP penalties, as it guarantees sparse variable selection, i.e., null regression coefficient estimates, while attenuating bias for the non-null estimates. In this work, the method is discussed, and some comparisons are presented.
Daniele Cuntrera, Vito Muggeo, Luigi Augugliaro (2022). Variable selection with unbiased estimation: the CDF penalty. In Book of short papers (pp. 1835-1839).
Variable selection with unbiased estimation: the CDF penalty
Daniele Cuntrera
;Vito Muggeo;Luigi Augugliaro
2022-01-01
Abstract
We propose a new SCAD-type penalty in general regression models. The new penalty can be considered a competitor of the LASSO, SCAD or MCP penalties, as it guarantees sparse variable selection, i.e., null regression coefficient estimates, while attenuating bias for the non-null estimates. In this work, the method is discussed, and some comparisons are presented.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Sis-2022-Cuntrera-Muggeo-Augugliaro.pdf
Solo gestori archvio
Descrizione: Contributo completo
Tipologia:
Versione Editoriale
Dimensione
130.38 kB
Formato
Adobe PDF
|
130.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.