Mathematical music theory helps us investigate musical compositions in mathematical terms. Some hints can be extended towards the visual arts. Mathematical approaches can also help formalize a "translation" from the visual domain to the auditory one and vice versa. Thus, a visual artwork can be mathematically investigated, then translated into music. The final, refined musical rendition can be compared to the initial visual idea. Can an artistic idea be preserved through these changes of media? Can a non-trivial pattern be envisaged in an artwork, and then still be identified after the change of medium? Here, we consider a contemporary installation and an ensemble musical piece derived from it. We first mathematically investigate the installation, finding its patterns and structure, and then we compare them with structure and patterns of the musical composition. In particular, we apply two concepts of mathematical music theory, the Quantum GestART and the gestural similarity conjecture, to the analysis of Qwalala, realized for the Venice Biennale by Pae White, comparing it to its musical rendition in the homonymous piece for harp and ensemble composed by Federico Favali. Some sketches of generalizations follow, with the "Souvenir Theorem" and the "Art Conjecture."

Maria Mannone (2022). A musical reading of a contemporary installation and back: mathematical investigations of patterns in Qwalala. JOURNAL OF MATHEMATICS & MUSIC, 16(1), 80-96 [10.1080/17459737.2021.1871787].

A musical reading of a contemporary installation and back: mathematical investigations of patterns in Qwalala

Maria Mannone
2022-01-01

Abstract

Mathematical music theory helps us investigate musical compositions in mathematical terms. Some hints can be extended towards the visual arts. Mathematical approaches can also help formalize a "translation" from the visual domain to the auditory one and vice versa. Thus, a visual artwork can be mathematically investigated, then translated into music. The final, refined musical rendition can be compared to the initial visual idea. Can an artistic idea be preserved through these changes of media? Can a non-trivial pattern be envisaged in an artwork, and then still be identified after the change of medium? Here, we consider a contemporary installation and an ensemble musical piece derived from it. We first mathematically investigate the installation, finding its patterns and structure, and then we compare them with structure and patterns of the musical composition. In particular, we apply two concepts of mathematical music theory, the Quantum GestART and the gestural similarity conjecture, to the analysis of Qwalala, realized for the Venice Biennale by Pae White, comparing it to its musical rendition in the homonymous piece for harp and ensemble composed by Federico Favali. Some sketches of generalizations follow, with the "Souvenir Theorem" and the "Art Conjecture."
2022
Maria Mannone (2022). A musical reading of a contemporary installation and back: mathematical investigations of patterns in Qwalala. JOURNAL OF MATHEMATICS & MUSIC, 16(1), 80-96 [10.1080/17459737.2021.1871787].
File in questo prodotto:
File Dimensione Formato  
17459737.2021.pdf

Solo gestori archvio

Descrizione: articolo
Tipologia: Versione Editoriale
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Qwalala_patterns_reviewed_4_compressed (1).pdf

Solo gestori archvio

Tipologia: Post-print
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Qwalala_patterns_preprint_compressed.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 937.32 kB
Formato Adobe PDF
937.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/570176
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact