Changes in the seafloor relief are particularly noticeable in shallow waterbodies (at depths up to several metres), where they are of significance for human safety and environmental protection, as well as for which the highest measurement accuracy is required. The aim of this publication is to present the integration data model of the bathymetric monitoring system for shallow waterbodies using Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV). As part of this model, three technology components will be created: a hydroacoustic and optoelectronic data integration component proposed by Dąbrowski et al., a radiometric depth determination component based on optoelectronic data using the Support Vector Regression (SVR) method, and a coastline extraction component proposed by Xu et al. Thanks to them, it will be possible to cover the entire area with measurements in the coastal zone, in particular between the shallow waterbody coastline and the min. isobath recorded by the echo sounder (the area is lacking actual measurement data). Multisensor data fusion obtained using Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS), Light Detection And Ranging (LiDAR), Real Time Kinematic (RTK), UAV, and USV will allow to meet the requirements provided for the International Hydrographic Organization (IHO) Special Order (horizontal position error ≤ 2 m (p = 0.95), vertical position error ≤ 0.25 m (p = 0.95)). To this end, bathymetric and photogrammetric measurements shall be carried out under appropriate conditions. The water transparency in the tested waterbody should be at least 2 m. Hydrographic surveys shall be performed in windless weather and the water level is 0 in the Douglas sea scale (no waves or sea currents). However, the mission with the use of an UAV should take place in appropriate meteorological conditions, i.e., no precipitation, windless weather (wind speed not exceeding 6–7 m/s), sunny day.

Oktawia Lewicka, Mariusz Specht, Andrzej Stateczny, Cezary Specht, Gino Dardanelli, David Brčić, et al. (2022). Integration Data Model of the Bathymetric Monitoring System for Shallow Waterbodies Using UAV and USV Platforms [10.3390/rs14164075].

Integration Data Model of the Bathymetric Monitoring System for Shallow Waterbodies Using UAV and USV Platforms

Gino Dardanelli;
2022-08-20

Abstract

Changes in the seafloor relief are particularly noticeable in shallow waterbodies (at depths up to several metres), where they are of significance for human safety and environmental protection, as well as for which the highest measurement accuracy is required. The aim of this publication is to present the integration data model of the bathymetric monitoring system for shallow waterbodies using Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV). As part of this model, three technology components will be created: a hydroacoustic and optoelectronic data integration component proposed by Dąbrowski et al., a radiometric depth determination component based on optoelectronic data using the Support Vector Regression (SVR) method, and a coastline extraction component proposed by Xu et al. Thanks to them, it will be possible to cover the entire area with measurements in the coastal zone, in particular between the shallow waterbody coastline and the min. isobath recorded by the echo sounder (the area is lacking actual measurement data). Multisensor data fusion obtained using Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS), Light Detection And Ranging (LiDAR), Real Time Kinematic (RTK), UAV, and USV will allow to meet the requirements provided for the International Hydrographic Organization (IHO) Special Order (horizontal position error ≤ 2 m (p = 0.95), vertical position error ≤ 0.25 m (p = 0.95)). To this end, bathymetric and photogrammetric measurements shall be carried out under appropriate conditions. The water transparency in the tested waterbody should be at least 2 m. Hydrographic surveys shall be performed in windless weather and the water level is 0 in the Douglas sea scale (no waves or sea currents). However, the mission with the use of an UAV should take place in appropriate meteorological conditions, i.e., no precipitation, windless weather (wind speed not exceeding 6–7 m/s), sunny day.
20-ago-2022
Oktawia Lewicka, Mariusz Specht, Andrzej Stateczny, Cezary Specht, Gino Dardanelli, David Brčić, et al. (2022). Integration Data Model of the Bathymetric Monitoring System for Shallow Waterbodies Using UAV and USV Platforms [10.3390/rs14164075].
File in questo prodotto:
File Dimensione Formato  
remotesensing-14-04075.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Versione Editoriale
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/569268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 19
social impact