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Abstract: Changes in the seafloor relief are particularly noticeable in shallow waterbodies (at depths 

up to several metres), where they are of significance for human safety and environmental protection, 

as well as for which the highest measurement accuracy is required. The aim of this publication is to 

present the integration data model of the bathymetric monitoring system for shallow waterbodies 

using Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV). As part of this 

model, three technology components will be created: a hydroacoustic and optoelectronic data inte-

gration component proposed by Dąbrowski et al., a radiometric depth determination component 

based on optoelectronic data using the Support Vector Regression (SVR) method, and a coastline 

extraction component proposed by Xu et al. Thanks to them, it will be possible to cover the entire 

area with measurements in the coastal zone, in particular between the shallow waterbody coastline 

and the min. isobath recorded by the echo sounder (the area is lacking actual measurement data). 

Multisensor data fusion obtained using Global Navigation Satellite System (GNSS)/Inertial Naviga-

tion System (INS), Light Detection And Ranging (LiDAR), Real Time Kinematic (RTK), UAV, and 

USV will allow to meet the requirements provided for the International Hydrographic Organization 

(IHO) Special Order (horizontal position error ≤ 2 m (p = 0.95), vertical position error ≤ 0.25 m (p = 

0.95)). To this end, bathymetric and photogrammetric measurements shall be carried out under ap-

propriate conditions. The water transparency in the tested waterbody should be at least 2 m. Hy-

drographic surveys shall be performed in windless weather and the water level is 0 in the Douglas 

sea scale (no waves or sea currents). However, the mission with the use of an UAV should take 

place in appropriate meteorological conditions, i.e., no precipitation, windless weather (wind speed 

not exceeding 6–7 m/s), sunny day. 
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1. Introduction 

The beginning of the 21st century is the era of using Unmanned Surface Vehicles 

(USV) in hydrographic surveys. Giordano et al. [1,2] tested a newly constructed autono-

mous USV (MicroVEGA) equipped with an anti-collision system, a Differential Global 

Positioning System (DGPS) receiver, an Inertial Navigation System (INS), a Single Beam 

Echo Sounder (SBES), and a vision system. Based on the tests conducted in the Marina 

Grande harbour in Italy, it was demonstrated that the prototype was suitable for carrying 

out bathymetric and geomorphological measurements in coastal waters, underwater ar-

chaeological research, monitoring the processes occurring in the coastal zone, etc. Jin et al. 

[3] presented a method for measuring the depth of ocean waters using an USV equipped 

with a GNSS Real Time Kinematic (RTK) receiver, a SBES, and based on the tide infor-

mation. The validation study was conducted on the Wuzhizhou Island in China. USVs 

were demonstrated to be suitable for carrying out bathymetric measurements in ocean 

waters. Liang et al. [4] presented an integrated method for bathymetric measurements of 

shallow waterbodies using high-resolution satellite images GeoEye-1 and an USV 

equipped with a GNSS RTK receiver and a SBES. The validation study was conducted on 

the Wuzhizhou Island in China and demonstrated a high depth measurement accuracy 

(22 cm (Root Mean Square (RMS))) using an USV, as well as the possibilities for use of 

high-resolution satellite images and USVs to carry out bathymetric measurements in large 

shallow waterbodies. Lubczonek et al. [5] developed a method for integrating data ac-

quired using Unmanned Aerial Vehicles (UAV) and USVs in order to create a digital 

model of the shallow waterbody bottom including both the land and water parts. The 

validation study was conducted on the Lake Dąbie in Poland and demonstrated that the 

integration of the above-mentioned methods enables the generation of a bathymetric 

model shallow waterbody model with an accuracy of 3 cm (RMS). Nikolakopoulos et al. 

[6] used UAVs and USVs to map beach rocks, i.e., well-cemented sedimentary rocks con-

sisting of gravel, mud, and sand, which form along the coastline. The study was con-

ducted on the Syros Island in Greece and demonstrated that thanks to the Structure from 

Motion (SfM) technique from the UAV and the data recorded by the echo sounder and 

side-scan sonar from the USV, it would be possible to find and map different geomorpho-

logical forms in shallow waters. Specht et al. [7] analysed the variability of the Territorial 

Sea Baseline (TSB) in three representative waterbodies of the Republic of Poland (exit from 

a large harbour, open sea, and river-mouth). To this end, two USVs (OceanAlpha USV 

SL20 and Seafloor Systems HyDrone) equipped with GNSS RTK receivers and SBESs were 

used. Based on the obtained results, it was concluded that the lowest variability of the TSB 

(1.86–3 m) was noted in the waterbody located near the Vistula Śmiała River mouth, 

which features steep shores (at a distance of a few metres from the coastline, the depth 

suddenly increases to 5 m). For this reason, changes in the TSB position are slight. On the 

other hand, the highest variability of the TSB (5.73–8.37 m) was noted in the waterbody 

adjacent to the municipal beach in Gdynia. The factors contributing to the significant 

changes in the TSB position included the land reclamation works performed periodically 

in this area and the fact that the waterbody depths increased slowly as the distance be-

tween it and the coastline increased. Specht et al. [8] carried out hydrographic surveys in 

the National Sailing Centre (NSC) yacht port at the Gdańsk University of Physical Educa-

tion and Sport (GUPES), which were aimed at defining and developing unique bathymet-

ric and navigational charts of the harbour and the approach fairway. The surveys were 

conducted using an USV (Seafloor Systems HyDrone) equipped with a GNSS RTK re-

ceiver and a SBES. The small dimensions of the USV enabled the performance of bathy-

metric measurements in the marina and in hard-to-reach places such as berths for yachts 

and other manned surface vessels (y-booms), as well as in the immediate vicinity of 

moored vessels or the quay. Stateczny et al. [9] presented an innovative USV (HydroDron) 

equipped with a GNSS/INS system, an interferometric system, a MultiBeam EchoSounder 

(MBES), and a sonar, intended for carrying out hydrographic surveys in restricted waters, 

particularly in shallow waterbodies. The main advantage of the HydroDron is the ability 
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to carry out bathymetric measurements with minimal human intervention, thanks to the 

autonomous control system. Suhari et al. [10] conducted bathymetric measurements using 

an improved version of the Remotely Operated Vehicle (ROV) (SHUMOO) equipped with 

an echo sounder, a GNSS receiver, a navigation module, and a remote sensing system on 

Malaysian rivers. The authors indicated what should be improved in the SHUMOO vessel 

in the context of conducting bathymetric measurements: the hull design should be 

changed, the position accuracy determined by the GNSS receiver should be improved, the 

distance of sounding performance from the coastal station should be increased, and au-

tonomous control should be ensured. 

UAVs are also increasingly used in hydrographic surveys. Alevizos et al. [11] per-

formed a data fusion based on RGB and multi-spectral images recorded by the UAV (DJI 

Phantom 4 Pro) equipped with a Complementary Metal-Oxide-Semiconductor (CMOS) 

and a multi-spectral camera to determine the shallow waterbody depth. The proposed 

method was validated on the data measured by the USV. The study demonstrated a high 

degree of correlation (R2 > 0.75 and Lin’s coefficient > 0.80) between the results of surveys 

carried out by the aerial drone as compared to the USV data. Moreover, the average depth 

measurement error of the optoelectronic method did not exceed a value of 0.5 m. Bagheri 

et al. [12] proposed a method using an UAV (DJI Spreading Wings S1000) equipped with 

a photogrammetric camera and the SfM technique for the bathymetric measurements of 

shallow rivers. The validation study was conducted on the Alarm River in Iran and 

demonstrated that the UAV + SfM method enables the generation of a river bottom model 

with a resolution of 1 cm and an accuracy not exceeding 0.075 m (p = 0.95) for a depth of 

up to 0.5 m. Bandini et al. [13] used an UAV (DJI Spreading Wings S900) equipped with 

two photogrammetric cameras and the GNSS/INS system for monitoring the water level, 

as well as the performance of bathymetric measurements of cenotes and lagoons. The 

study was conducted on the Yucatán Peninsula in Mexico and demonstrated that the wa-

ter level measurement accuracy was 5–7 cm, while the depth measurement accuracy was 

at a level of approx. 3.8% of the measured depth. Bandini et al. [14] carried out bathymetric 

surveys of a small inland waterbody using an UAV (DJI Spreading Wings S900) to which 

a SBES was attached with a rope. The validation study was conducted on the Lake Furesø 

in Denmark and demonstrated that the proposed method enabled a bathymetric meas-

urement of a waterbody (with a depth of up to 35 m) with an accuracy of approx. 2.1% of 

the measured depth. Moreover, the obtained results are similar to those that can be 

achieved using both manned and unmanned hydrographic vessels. He et al. [15] and Kim 

et al. [16] developed a Geospatial Regression Method (GWR) method that is aimed at de-

termining the depth of a shallow stream (with a depth of up to 1 m) based on RGB images 

taken from the UAV. The validation study was conducted on the Lake Spark in China and 

demonstrated that the determination coefficient (R2) and the standard deviation of the 

depth measurement error (Root Mean Square Error (RMSE)) amounted to 0.88 and 1.32 m 

after taking into account the phenomenon of water-wave refraction and 0.85 and 1.37 m 

after inverting the water colour, respectively. Massuel et al. [17] carried out bathymetric 

measurements of a small waterbody (Hoshas) in Tunisia using an UAV (DJI F550) 

equipped with a photogrammetric camera and compared them with the results obtained 

using a DGPS receiver. The digital bottom models were then generated using the SfM 

technique and geostatistical estimation methods such as kriging or Triangulated Irregular 

Network (TIN). The study demonstrated that the depth measurement accuracy was 10 

times higher for UAV surveys than that for DGPS geodetic measurements. Panlilio et al. 

[18] carried out bathymetric measurements using an UAV (DJI Phantom 4 Pro) equipped 

with a RGB camera in a shallow waterbody (with a depth of up to 2 m) adjacent to the 

beach in Lian, the Philippines. The study demonstrated that the depth measurement ac-

curacy oscillates around 0.06–0.064 (RMS), after taking into account the phenomenon of 

water-wave refraction and the corrector surface. 

Currently, one of the methods of bathymetric monitoring of shallow waterbodies is 

the satellite image analysis. Cao et al. [19] used multispectral images taken by the 
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WorldView-2 satellite to determine the waterbody depth between 0 m and 20 m. The 

depth measurement error ranged from 1.76 m to 2.09 m (RMS) for the water depth range 

between 5 m and 20 m. However, in ultra-shallow depths (0–5 m), much larger errors were 

obtained. The method proposed by Popielarczyk et al. [20] consisted of using the inte-

grated Global Navigation Satellite System (GNSS), Robotized Total Station (RTS), and 

SBES measurements, which were performed on the manned vessel. The proposed method 

makes it possible to determine the waterbody depth with accuracy of several centimetres. 

The disadvantage of this solution is the range of recorded data. It was impossible to obtain 

bathymetric data near the coast, so as not to damage the measurement equipment and the 

vessel. Another interesting solution is the possibility of determining the waterbody depth 

based on a publicly available database. Khazaei et al. [21] developed a novel GLObal Bath-

ymetric (GLOBathy) database, which contains 1.4 million inland waterbodies (lakes). The 

GLOBathy database uses GIS tools to generate bathymetric charts based on the max depth, 

as well as the geometry and physical attributes of a waterbody from the HydroLakes da-

tabase. Another measurement method is a bathymetric monitoring of waterbodies using 

unmanned platforms. Erena et al. [22] used ROV, UAV, and USV to determine the tank 

capacity. The aim of this article was not a bathymetric monitoring of the reservoir and the 

obtained depth measurement errors were not given. However, it can be judged to be fully 

satisfactory and to meet the accuracy requirements for the International Hydrographic 

Organization (IHO) Special Order. In recent years, the use of bathymetric Light Detection 

And Ranging (LiDAR) has been a rapidly developing method of bathymetric monitoring 

of waterbodies. Pratomo et al. [23] used a manned aircraft equipped with a bathymetric 

LiDAR for assessing the penetration capability of the green light of the Airborne LiDAR 

Bathymetry (ALB) in shallow water areas. The results of bathymetric measurements were 

referenced to GNSS RTK measurements. The depth measurement accuracy was 23.9 cm 

(p = 0.95). Wang et al. [24] used an UAV equipped with a lightweight bathymetric LiDAR 

for hydrographic surveys of shallow waterbodies and detecting underwater objects. The 

study demonstrated that the water table measurement accuracy was 0.123 m, while the 

absolute depth measurement accuracy was 0.127 m. As compared to the Airborne Laser 

Scanning (ALB) system, the bathymetric LiDAR obtained a higher spatial resolution (42 

points/m2), and the max depth measured by it was 1.7–1.9 of the Secchi depth. It should 

be remembered that the disadvantage of this solution is the high cost of purchasing/rent-

ing a bathymetric LiDAR and the appropriate water transparency in the tested waterbody. 

The examples of the use of UAVs and USVs described above show how significant 

bathymetric shallow waterbody monitoring is [24–26]. Hence, for the purposes of the IN-

NOvative autonomous unmanned BAThymetric monitoring system for shallow water-

bodies (INNOBAT) project [27], it was decided to create an integrated system using au-

tonomous unmanned aerial and surface vehicles, intended for bathymetric monitoring in 

the coastal zone. The system will enable the seabed relief to be surveyed in accordance 

with the requirements laid down for the IHO Special Order [28]. For the purposes of the 

study, autonomous unmanned measurement platforms, i.e., aerial and surface vessels that 

move autonomously (without human intervention) along precisely planned routes will be 

used. Bathymetric measurements using UAVs and USVs can be conducted up to the max 

depth which may be recorded by a MBES. 

The bathymetric and topographic system will enable, as compared to other popular 

bathymetric monitoring systems, such as hydroacoustic sounding in ultra-shallow water-

bodies using classical manned vehicles [29] and methods for determining waterbody 

depths using high-resolution satellite images [30–32], the accurate and precise measure-

ment of the entire coastal relief. It will be possible thanks to data acquired using a GNSS 

receiver, a LiDAR, and a photogrammetric camera that will be installed on an UAV, as 

well as using a GNSS receiver and a MBES that will be mounted on an USV. LiDAR data 

will enable the development of a digital land model. The images taken using a photo-

grammetric camera will enable the determination of both the waterbody coastline course 

and the depth of the waterbody between the coastline and the min. isobath recorded by 
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an echo sounder installed on an USV. The remaining part of the seabed will be measured 

using an integrated hydrographic system (GNSS receiver and MBES) mounted on an USV. 

Further on, the image transformation methods of addition and extraction will be applied 

to develop the final Digital Terrain Model (DTM) of the coastal zone, which will enable 

an assessment of the hydrographic and navigation situation in the shallow waterbody 

(Figure 1) [27]. One of the most popular methods for modelling the seabed in hydrography 

will be used to create the DTM model, namely B-splines, Grid, Non-Uniform Rational B-

Spline (NURBS) or TIN [33–35]. Based on data recorded during the measurement cam-

paigns, the method that best approximates the seafloor will be selected. 

 

Figure 1. A diagram of the operation and functioning of an innovative autonomous unmanned sys-

tem for bathymetric monitoring of shallow waterbodies [27]. 

The following measurement equipment will be used to test the INNOBAT system: 

1. Aurelia X8 Standard UAV by the Aurelia Technologies Inc. [36]; 

2. Two GNSS/INS systems by the SBG Systems: Ellipse-D [37] which will be mounted 

on the UAV and Ekinox2-U [38] which will be placed on the USV; 

3. Puck LITE LiDAR by the Velodyne Lidar [39]; 

4. α6500 camera [40] and E 35mm F1.8 OSS lens [41] by the Sony Corporation, as well 

as T3V3 camera stabiliser by the Gremsy [42]; 

5. HydroDron USV by the Marine Technology Ltd. [43]; 

6. 3DSS-DX-450 sonar by the Ping DSP Inc. [44]. 

In order for the INNOBAT system to operate, it is also necessary to develop the data 

acquired by autonomous unmanned aerial and surface vehicles, which will produce a 

DTM in the coastal zone. Therefore, the aim of this publication is to present the integration 

data model of the bathymetric monitoring system for shallow waterbodies using UAVs 

and USVs. As part of this model, three technology components will be created: a hydroa-

coustic and optoelectronic data integration component, a radiometric depth determina-

tion component based on optoelectronic data, and a coastline extraction component. 

2. Materials and Methods 

2.1. Hydroacoustic and Optoelectronic Data Integration Component 

The first stage of work involved a review and analysis of the existing hydroacoustic 

and optoelectronic data integration methods. To this end, four selected data integration 

methods [22,45–47] were described in detail in the publication [48]. Of the many methods, 

those that used data derived from GNSS, RTK measurements, hydrographic surveys, a 

photogrammetric pass using unmanned vehicles, and Terrestrial Laser Scanning (TLS) 
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were selected. Moreover, the accuracy analysis of selected data integration methods had 

to be performed. 

The assessment of the applied mathematical assumptions in data integration [45] was 

verified on the basis of the characteristic point coordinates of the TLS cloud related to the 

PL-2000 plane coordinate system, which were compared to the coordinates obtained from 

land GNSS measurements. The deviation values did not exceed 0.016 m in the horizontal 

plane, however, the deviation values did not exceed 0.027 m in the vertical plane. This 

proves the accuracy of the harmonisation process. No verification procedures were per-

formed for the GNSS, TLS, UAV, and USV data integration methods [22]. In the case of 

data integration accuracy [46], the RMSE of the interpolated Topographic Point Cloud 

(TPC) amounted to 0.13 m for the northing, 0.15 m for the easting, and 0.007 m for the 

height coordinate. The TPC was referenced to Ground Control Points (GCP) (markers 

with a diameter of 0.18 m), which were determined based on GNSS RTK measurements. 

The accuracy of the point cloud generated by the SfM method is comparable with the data 

from LiDAR (accuracy at the level of 0.15–0.25 m). It is also worth paying attention to the 

procedure of selecting the best interpolation method for bathymetric data. The values of 

Mean Absolute Error (MAE), R2, and RMSE were calculated for the interpolated Bathy-

metric Point Cloud (BPC) with respect to the TPC. According to the proposed accuracy 

assessment, the Inverse Distance Weighting (IDW) was selected. The RMSE value (0.18 m) 

of the interpolated BPC in relation to the TPC indicates a high degree of model fitting. The 

coefficient of determination also indicated a very high model fitting (0.90). On the other 

hand, the integration of large-scale data [47] processed into two numerical models (BPC 

and TPC) was characterised by high accuracy. The accuracy was assessed by comparing 

the bathymetric model with precise reference data. As a result, the RMSE value of 0.43 m 

was obtained. The description and accuracy of selected GNSS, hydroacoustic, and optoe-

lectronic data integration methods used in hydrography are presented in Tables 1 and 2. 

Table 1. A list of selected GNSS, hydroacoustic, and optoelectronic data integration methods used 

in hydrography. 

Author and the 

Year of Publication 
Description of the Method 

Erena M. et al., 2019 

[22] 

The method of data integration was developed based on GNSS, TLS, UAV, and USV measure-

ments in the Segura River Basin (Spain). The aim of the study was to present an example of the 

use of data fusion in monitoring quantitative changes in water resources. 

Dąbrowski P.S. et 

al., 2021 [45] 

The method of data integration was developed based on land GNSS measurements, laser scan-

ning, and hydrographic [29] and photogrammetric [49] surveys conducted in 2019 during the 

tombolo phenomenon measurement campaign in Sopot (Poland). The aim of the study was to 

discuss the geometric aspect of geodetic harmonisation, as well as present research results based 

on both theoretical aspects and practical verification of the methodology. 

Genchi S.A. et al., 

2020 [46] 

The method of data integration was developed based on UAV and USV measurements con-

ducted in November 2018 and January 2019, respectively, in the Bahia Blanca Estuary (Argen-

tina). The aim of the study was to present a methodological proposal to generate a topobathymet-

ric model, using low-cost unmanned platforms in a very shallow/shallow and turbid tidal envi-

ronment. 

Gesch D. and Wil-

son R., 2001 [47] 

The method of data integration was developed based on the National Oceanic and Atmospheric 

Administration (NOAA), United States Geological Survey (USGS), as well as LiDAR data in 

Tampa Bay (USA). The aim of the study was to develop techniques and tools to facilitate the inte-

gration of data derived from different sources. 
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Table 2. Accuracy of selected GNSS, hydroacoustic, and optoelectronic data integration methods 

used in hydrography [48]. 

Measurement Accuracy 
Method According to 

Dąbrowski P.S. et al. 

Method According to 

Genchi S.A. et al. 

Method According to 

Gesch D. and Wilson R. 

dN 1 0.023 m – – 

dE 2 0.16 m – – 

dNH 3 0.027 m – – 

RMSEx 4 – 0.15 m – 

RMSEy 5 – 0.18 m – 

RMSEz 6 – 0.007 m – 

RMSE 7 – 0.18 m – 

MAE 8 – 0.05 m – 

R2 9 – 0.90 – 

RMSE 10 – – 0.43 m 

Max difference in northing 1, easting 2, and normal height 3 coordinates with respect to reference 

points. RMSE of x 4, y 5, and z 6 coordinates with respect to the SfM model and 7 GCPs. RMSE 7, 

MAE 8, and R2 9 with respect to the BPC and TPC models. RMSE 10 with respect to the bathymetric 

grid and reference transect data. 

For the purposes of the INNOBAT project applications, it was decided to choose the 

data integration method proposed by [45]. The reason for this choice was the highest ac-

curacies of the geospatial data harmonisation among all of the analysed integration meth-

ods [22,45–47]. Obviously, it should be noted that the authors of the above-mentioned 

publications used different measurement techniques and geospatial data with different 

coordinate systems in their studies, as well as carried out the surveys on different water-

bodies. Moreover, the authors of the method [45] were the only ones to describe in detail 

the mathematical procedures, which enable the creation of a 3D terrain model of the 

coastal zone based on the data recorded by hydroacoustic and optoelectronic devices. 

The data integration method [45] was developed on the basis of the tombolo (salient) 

measurement campaign in Sopot in 2019, during which GNSS, TLS, UAV, and USV meas-

urements were performed (Figure 2). In this method, the problem of indeterminacy of 

geodetic and hydrographic coordinate systems during the data integration process was 

identified. Hence, the mathematical procedures are described in detail, which allow the 

data to be transformed to a uniform 3D coordinate system. 
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Figure 2. A simplified block diagram presenting the GNSS, TLS, UAV, and USV data integration 

according to [48]. 

Before commencing the geospatial data harmonisation, the target 3D coordinate sys-

tem needs to be chosen. The authors of the method [45] adopted the plane coordinate 

system PL-2000 (designed for large-scale applications in Poland), while relating the nor-

mal heights to the zero ordinate of the gauging station in Kronstadt (PL-KRON86-NH). 

The geospatial data harmonisation begins with determining several variables [45]: 

1. Direction angles (δ) (°); 

2. Averaged rotation angle (θ) (°); 

3. Three elementary rotation matrices around the axes OX, OY and OZ of the 3D coor-

dinate system (Rx, Ry, Rz) (–); 

4. Scale factor (S) (–); 

5. Three-dimensional coordinates of the translation vector ( , ,
x y z

T T T ) (–). 

After calculating the parameters: δ, θ, Rx, Ry, Rz, S, and , ,
x y z

T T T , the point coordi-

nates in the local based coordinate system ( , ,d d dx y z ) (m), which were recorded by hy-

droacoustic and optoelectronic devices, can be determined based on the formulas: 

'( )d

x x
x S R x T=   +   (1) 

'( )d

y y
y S R y T=   +   (2) 

'( )d

z z
z S R z T=   +   (3) 

where: 
' ' ', ,x y z —point coordinates in the local modified coordinate system (m). 
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In the data integration model presented above [45], certain modifications needed to 

be introduced for it to be used for the purposes of the INNOBAT system [27]. As the model 

will be used for bathymetric measurements of shallow waterbodies, the system PL-Uni-

versal Transverse Mercator (UTM) was adopted as the target plane coordinate system. It 

is created based on the mathematically unique alignment of points on the reference ellip-

soid World Geodetic System 1984 (WGS-84) to the corresponding points on the plane ac-

cording to the theory of transverse Mercator projection [50]. According to [51], the system 

PL-UTM is used for the purposes of publishing standard cartographic compilations at 

scales ranging from 1:10,000 to 1:250,000, nautical charts, and other maps intended for 

national security and defence purposes. 

Another significant element is the standardisation of normal heights determined by 

measurement instruments. The depths and heights in Poland should be related to the ver-

tical reference system, i.e., the so-called chart datum [52]. In marine cartography, the ver-

tical reference system is defined as the reference level against which the sea depths and 

changes in the sea level are given. According to [53], the depths of waterbodies in Poland 

can be related to two height systems, i.e., Amsterdam (PL-EVRF2007-NH) and Kronstadt 

(PL-KRON86-NH). The height system PL-KRON86-NH shall be used until the implemen-

tation of the height system PL-EVRF2007-NH throughout the country, but no later than 

31 December 2023. 

As regards the depths measured by an echo sounder, the water level changing during 

hydrographic surveys needs to be taken into account. To this end, the normal height of 

the point measured by a hydroacoustic instrument must be calculated in the system PL-

EVRF2007-NH (HPL-EVRF2007-NH) (cm) or PL-KRON86-NH (HPL-KRON86-NH) (cm) based on the 

following formulas [29]: 

( )86 86PL KRON NH PL KRON NHE
H d d d

− − − −
= − +      (4) 

( )2007 2007PL EVRF NH P HE L EVRF N
H d d d

− − − −
= − +      (5) 

where: 

HPL-KRON86-NH—normal height of the point measured by echo sounder in the PL-KRON86-

NH height system (cm), 

HPL-EVRF2007-NH—normal height of the point measured by echo sounder in the PL-EVRF2007-

NH height system (cm), 

d—depth measured by the echo sounder (cm), 

ΔdE—draft of the echo sounder transducer (cm), 

ΔdPL-KRON86-NH—depth correction referred to the chart datum in the PL-KRON86-NH height 

system (cm), which needs to be added where the averaged water level ( SWd ) does not 

exceed 508 cm, otherwise, it needs to be subtracted, 

ΔdPL-EVRF2007-NH—depth correction referred to the chart datum in the system PL-EVRF2007-

NH height system (cm), which needs to be added where the averaged water level ( SWd ) 

does not exceed 500 cm, otherwise, it needs to be subtracted. 

However, it should be noted that the depth correction (Δd) is defined as follows [29]: 

8686
5  08

PL KRON NHL SWP KRON NH
cmd d

− −− −
 = −   (6) 

20072007
500 

PL EVRF NHPL EVRF NH SWd dcm
− −− −

 = −   (7) 

where: 
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86PL KRON NHSWd
− −

—averaged sea level observed on a tide gauge between consecutive full 

hours in the PL-KRON86-NH height system (cm), 

2007PL EVRF NHSWd
− −

—averaged sea level observed on a tide gauge between consecutive full 

hours in the PL-EVRF2007-NH height system (cm). 

The depth correction is determined by the reference system to which the zero ordi-

nate of the gauging station is referenced. In Poland, the majority of gauging stations have 

an elevation of 500 cm in the system PL-EVRF2007-NH or 508 cm in the system PL-

KRON86-NH. The determination of the depth correction is extremely important as water 

level changes can range from a few to several cm in 1 h. However, in order to ensure high 

measurement accuracy, hourly registration of water levels at the gauging stations might 

not be sufficient. Therefore, the current water level read from the gauging station should 

be compared to the water level calculated from the Tide Tables issued annually by the 

British Admiralty [54,55]. 

It is also important to choose the appropriate gauging station. It should be empha-

sised that no international legal act regulating the rules for carrying out hydrographic 

surveys specifies the method for acquiring water level data. However, it appears most 

reasonable to acquire this information from a gauging station located nearest to the site of 

carrying out hydrographic surveys. The method for reading the water level from a gaug-

ing station is presented in Figure 3 [56]. 

 

Figure 3. Diagram of a water level measurement carried out by the Institute of Meteorology and 

Water Management (IMGW-PIB) in Poland [56]. 

2.2. Radiometric Depth Determination Component Based on Optoelectronic Data 

The first stage of work involved a review and analysis of six methods for determining 

shallow waterbody depths based on the images taken by an UAV. These algorithms in-

cluded: cBathy [57], Depth Inversion [58], Support Vector Regression (SVR) [59], UAV-

SfM [12], uBathy [60], and UAV-Derived Bathymetry (UDB) [61]. They were described in 

Table 3. 
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Table 3. A list of methods for determining shallow waterbody depths based on the images taken by 

an UAV. 

Author and the 

Year of Publica-

tion 

Description of the Method 

Bagheri O. et al., 

2015 [12] 

The UAV-SfM method is based on the application of UAV imagery and SfM processing. To be able 

to validate this algorithm, photogrammetric surveys were conducted using the UAV (DJI Phantom 

3 Pro) on the urban Victoria Beach located on the Alarm River (Iran). 

Holman R. et al., 

2013 [57] 

The cBathy is based on observations of surface wave movements over long time series. The estima-

tion of bathymetry is possible by determining the relation between the wave velocity and the 

depth. To be able to validate this algorithm, photogrammetric surveys were conducted using the 

Unmanned Aerial System (UAS) (3D Robotics X8+ platform) at two locations: on a waterbody lo-

cated at the Field Research Facility (FRF) in Duck and on the Agate Beach coastline (USA). 

Hashimoto K. et 

al., 2021 [58] 

The Depth Inversion is based on wave propagation resulting from the combination of the wind 

force, its duration, and the gravitational force which is detected from video image. To be able to 

validate this algorithm, photogrammetric surveys were conducted using the UAV (DJI Phantom 4) 

in ocean waters located in the Suruga Bay (Japan). 

Agrafiotis P. et al., 

2019 [59] 

The SVR is based on computation of the linear regression model in a multidimensional feature 

space. To be able to validate this algorithm, photogrammetric surveys were conducted using the 

UAV (Swinglet CAM) in Agia Napa and Amathouda (Cyprus). 

Simarro G. et al., 

2019 [60] 

The uBathy is based on the Principal Component Analysis (PCA) of the Hilbert transform as a func-

tion of time. The process is carried out on video images in order to determine the frequency and 

wave number for individual wave components. To be able to validate this algorithm, photogram-

metric surveys were conducted using the UAV (DJI Phantom 3 Pro) on the urban Victoria Beach 

located on the southwestern coast of Spain (Atlantic Ocean). 

Tonion F. et al., 

2020 [61] 

The UDB is based on the Satellite-Derived Bathymetry (SDB) method, which uses algorithms that 

operate based on multi-spectral images, which are able to ensure a spectral resolution higher than 

RGB images by recording image data in specific electromagnetic spectrum range. To be able to vali-

date this algorithm, photogrammetric surveys were conducted using the UAV (Spreading Wings 

S1000) in an area located on the Tyrrhenian Sea coast (Italy). 

The main criteria for the assessment of methods for determining shallow waterbody 

depths included the depth measurement accuracy, hydrometeorological conditions occur-

ring during the performance of photogrammetric surveys, and the measurement equip-

ment used. For most algorithms (cBathy, Depth Inversion, SVR, uBathy, and UDB), the 

depth RMSE values were provided and summarised in Table 4. The RMSE measure was 

selected because it is the most commonly applied criterion to assess the accuracy of the 

algorithms used for depth determination. It should be concluded that the RMS measures 

obtained for the algorithms cBathy (0.17–0.34 m), Depth Inversion (0.33–0.52 m), SVR 

(0.11–0.50 m), and uBathy (0.38–0.73 m) are close to each other. Where the UDB method 

was applied, a high depth measurement accuracy was obtained for the range of 0–5 m 

(0.24–0.37 m). However, it should be noted that this accuracy decreases with an increase 

in the depth, as the depth measurement error range was several times greater (0.89–1.06 

m). As regards the UAV-SfM method, a verification study was conducted, but another 

statistical measure of the depth measurement accuracy was applied. The authors of the 

UAV-SfM method wrote that the R95 measure was 0.075 m for clean waterbodies with a 

depth not exceeding 0.5 m. 
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Table 4. Summary of the depth RMSE values for the cBathy, Depth Inversion, SVR, uBathy, and 

UDB methods. Own study based on [57–61]. 

Method RMSE (m) 

cBathy   0.17–0.34 

Depth Inversion   0.33–0.52 

SVR 
Depth range: 0.1–5.57 m  0.11–0.19 

Depth range: 0.2–14.8 m  0.45–0.50 

uBathy 

Video 1 

tf = 0 s – 

tf = 5 s 0.42–0.73 

tf = 10 s 0.47–0.59 

Video 2 
tf = 0 s 0.38–0.44 

tf = 5 s 0.38–0.46 

UDB 

Depth range: 0–5 m 
Lyzenga 0.24 

Stumpf 0.37 

Depth range: 0–11 m 
Lyzenga 0.89 

Stumpf 1.06 

The cBathy, Depth Inversion, and uBathy algorithms used to determine shallow wa-

terbody depths make use of the phenomenon of water-wave refraction that is modelled 

based on the acquired video images. This fact prevented the use of these algorithms as the 

waving is often accompanied by strong winds, which significantly hinders surveys using 

UAVs. Another disadvantage of the above-mentioned algorithms is the impossibility of 

carrying out bathymetric measurements on inland waterbodies, where virtually no wave 

action occurs. 

The UAV-SfM is an algorithm that satisfies the design requirements, yet it was not 

selected as the target method for determining the depth of a shallow waterbody. This is 

due to the fact that it requires time-consuming and manual work to be performed in the 

post-processing. It is based on the SfM technique used to obtain a point cloud. The points 

found under the waterbody surface must then be selected and corrected because of the 

phenomenon of light beam refraction when the medium in which it moves changes. 

The UDB algorithm requires that data be acquired using a multi-spectral camera so 

that mathematical operations can be performed on electromagnetic wave spectra outside 

the visible light spectrum. As part of the INNOBAT project, a high-resolution digital cam-

era was purchased, but it is not able to record other wave spectra than that of visible light. 

Therefore, this algorithm cannot be used. 

The SVR algorithm is not directly intended for solving problems concerning the de-

termination of waterbody depths. This is an algorithm designed to perform the linearisa-

tion of a selected issue. This solves the problem of light beam refraction when the medium 

changes. The creation of a mathematical model enables considerable automation of the 

data processing. The authors of the method stress that work based on this model allows 

the accuracy requirements provided for the IHO Special Order to be satisfied (vertical 

position error ≤ 0.25 m (p = 0.95)) [28]. Another advantage of the SVR algorithm is the 

favourable hydrometeorological conditions (uniform illumination of the test area and 

windless weather) from the perspective of the photogrammetric survey performance us-

ing an USV. Furthermore, no specialised measurement equipment, i.e., a drone with a 

digital camera installed, is required. Therefore, it was decided to choose the method pro-

posed by [59] to determine the shallow waterbody depths based on an analysis of images 

taken by UAV. 

SVR [62] is an algorithm that operates based on the calculation of the linear regression 

function in a multi-dimensional space of features (Figure 4) [63]. The model is to enable a 

more accurate determination of the depth of point clouds obtained based on the SfM tech-
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nique by eliminating the phenomenon of water-wave refraction [64]. SfM [65] is a tech-

nique, whose task is to provide three-dimensional scenes using a series of temporal RGB 

images and georeferencing information. It also provides information on the internal and 

external camera orientation at the time of acquiring each image by using automatic algo-

rithms for estimating its location. This results in a model that enables the determination 

of how individual 3D coordinates are projected on the images from the camera [66,67]. 

After generating the SfM point cloud, one of the five popular vegetation filter alogrithms 

will be used to clean it [68]: 

1. Ground point classification based on a Vegetation Index (VI); 

2. TIN densification, or adaptive TIN, as implemented in LAStools (TIN) [69,70]; 

3. Photoscan native filtering algorithm [71]; 

4. Iterative Surface Lowering (ISL) [72]; 

5. A combination of ISL and VI (ISL_VI). 

 

Figure 4. Diagram of the SVR algorithm’s operation. Own study based on [59]. 

Before commencing work with the SVR algorithm, the process of input data stand-

ardisation must be carried out. This is due to the fact that the Support Vector Machine 

(SVM) algorithms are sensitive to large differences in the scale for particular characteris-

tics (depths) of the input data [73]. To this end, a popular standardisation method known 

as Z-score can be used [74]: 

norm i
i

h
h





−
=   (8) 

where: 
norm

i
h —standardised value of the i-th depth (–), 

hi—measured value of the i-th depth (m), 

μ—averaged depth value (m), 

σ—standard deviation of the depth (m). 

After preparing the training set, the standardised depth data can be used to create a 

mathematical model of the seafloor. The task of the SVR algorithm is to determine such a 

linear function that the max possible number of depth measurements could be located no 

further away than ε from the approximated function. The SVR method for function ap-

proximating makes use of formula (9), which is referred to in the literature as the first 

optimisation problem [75]: 

( )
1

1
min ( ), ( ) ; ,

2

l
T

i iw
i

f w f w w w C w h z



=

 +    (9) 

where: 

f(w)—approximated prediction function (–), 

w—weight vector (–), 
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C—positive hyperparameter specifying the effect of the cost function on the weight vector 

(–), 

l—number of measurements (–), 

ε—hyperparameter specifying the max deviation, the distance from the approximated 

straight line (–), 

ξε—positive distance from ε for the elements of the training set located outside the as-

sumed max deviation (–), 

zi—real, standardised value of the i-th depth (–). 

ξε, which is a cost function, can be determined using the following formula: 

( )
2

max ,0T

i i
w h z


 = − −   (10) 

The solution to the first optimisation problem is a solution recommended for training 

sets with a greater number of measurements than the examined features [76]. The algo-

rithm used to solve the first optimisation problem is the TRON method [77]. This is a two-

level iterative algorithm that is responsible for the determination of the weight vector 

value (wk), the determination of the confidence region (∆k) and the formulation of the 

model quadratic equation: 

( ) ( ) ( )21

2

T
k T k

k
q s f w s s f w s  +    (11) 

where: 

f(wk + s)-f(wk)—a function which is approximated by the model quadratic equation qk(s) (–

), 

∇f(w)—gradient of the approximated linear function (–), 

∇2f(w)—generalised Hessian of the approximated function (–), 

s—optimisation step that specifies the direction of the search for the weight vector (–), 

k—iteration number (–). 

The search for an optimum step is carried out with the second iterative layer using 

the following condition: 

( )min ,
ks

q s for s     (12) 

The SVR algorithm was created based on [77–79]. 

2.3. Coastline Extraction Component 

The work on this component began with a review of the existing coastline extraction 

methods. Before the commencement, several criteria were specified for qualifying a 

method for further analyses: 

1 The method must only be used for the coastline extraction from a DTM or a point 

cloud; 

2 Measurement data will be obtained only by Airborne Laser Scanning (ALS). This 

means the rejection of methods based on multisensory fusion, even if the fusion 

involves ALS; 

3 Due to the rapid development of geoinformatics and computational techniques, the 

proposed method had to be published within the last 10 years (2011–2021). 

Nine methods for extracting the coastline were selected using the above-mentioned 

criteria, originating from seven scientific publications from the years 2011–2021 [80–86]. 

Among the analysed papers, there are those that carried out very extensive method vali-

dation using many different types of the coastline and waterbodies with different geomet-

ric and optical characteristics [87], as well as those in which the method is only tested on 
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a single dataset [81]. Table 5 provides a cumulative list of all the discussed papers along 

with the main assumptions upon which the proposed method was based. 

Table 5. A list of methods for validating the results of conducted coastline extraction. Own study 

based on [80–86]. 

Author and 

the Year of 

Publication 

The Manner of Method Validation 

Farris A.S. et 

al., 2022 [80] 

A discussion and comparison of three methods for extracting coastline (contour, grid, and pro-

file). A visual comparison of the differences between individual methods. A quantitative compar-

ison of differences by interpolating the shoreline coordinates to the transverse profiles distributed 

along the coastline every 50 m. Mean differences in shoreline positions, RMS differences in coast-

line positions, and RMS differences in shoreline positions were calculated after the mean differ-

ence was removed for each combination of methods. Statistical analysis of the uncertainty in the 

results for the grid and profile method. 

Fernández 

Luque I. et al., 

2012 [81] 

Visual and quantitative assessment of the proposed method on a single dataset. The use of the 

contour method [80,88] as the reference method. Statistical analysis of the uncertainty of both 

methods. 

Hua L.W. et 

al., 2021 [82] 

Visual assessment of the results. A comparison of the original method with the contour method 

while not specifying its source. 

Liu H. et al., 

2011 [83] 

The authors propose two methods which they validate based on a single dataset. They conduct a 

visual analysis of the obtained coastlines and the effect of certain parameters on the received re-

sults. 

Xu S., Xu S., 

2018 [84] 

Visual and quantitative assessment of the coastline extraction. A comparison of the extraction re-

sults on five datasets. Accuracy metrics (correctness and completeness) were calculated. The com-

parison was carried out in relation to the manually marked coastline courses. The results were 

referred to four different papers. However, only the achieved accuracies obtained on different da-

tasets were compared. 

Yousef A.H. et 

al., 2013a [85] 

Visual assessment of the coastline extraction using a proprietary morphological algorithm. The 

comparison was made for two datasets. There is no comparison of the obtained results with other 

methods. 

Yousef A.H. et 

al., 2013b [86] 

A supplement in relation to the above paper. The same datasets and one additional set (originat-

ing from the same source) were used. A quantitative assessment of the extraction results was con-

ducted. The accuracy assessment was carried out based on the transverse profiles determined 

along the manually specified coastline. The obtained results were compared with the results ob-

tained by the method [83,89], as well as the proprietary method using the SVM classifier [85]. The 

method [89] and the SVM classifier made use of the data from other sensors (aerial images and an 

orthophotomap). Additionally, the authors carried out an estimation of errors and standard devi-

ations using a Monte Carlo simulation of both methods proposed by them. 

It was noted that the majority of the methods use information concerning the tides or 

base the point identification on the density and elevation indicators. Moreover, it is com-

mon practice to carry out only a visual assessment of the coastline extraction. Attention 

was also paid to the need for the creation of standardised reference methods in order to 

facilitate the performance of quantitative comparisons of the accuracy of particular meth-

ods. 

Based on the conducted analyses, the parametric method was chosen [87]. An im-

portant advantage of the method is the use of only geometrical properties of the LiDAR 

point cloud in order to carry out the coastline extraction. Moreover, the parametric nature 

of the method enables the full automation of the extraction process and offers the possi-

bility of conducting further research to attempt to develop specific parameter values for a 

particular measurement (coastline type, measurement conditions, and waterbody type). 
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The authors also compared the accuracy level that they successfully achieved using their 

method with four other studies on similar subjects [90–93]. Based on the conducted com-

parative analysis, it was concluded that the accuracy level achieved in the study con-

cerned (1 m) was higher than that for the other reference methods (1.5–31 m). The pro-

posed method meets the accuracy requirements provided for the most stringent IHO or-

der, i.e., the Exclusive Order (horizontal position error ≤ 5 m (p = 0.95)) [28], which refers 

to papers related to the determination of the coastline course. 

The method proposed by [87] is a parametric method of the coastline extraction based 

on the point cloud obtained by LiDAR measurements (Figure 5). It can be divided into 

two main parts. The first part aims to identify and cluster land returns, while the second 

part focuses on the coastline extraction. Both parts of the algorithm are briefly described 

below. 

 

Figure 5. Diagram of the algorithm operation for coastline extraction. Own study based on [87]. 

The execution of the identification and clusterisation of land returns process depends 

on the estimated amount of returns received from waterbodies in the area. If the point 

cloud does not contain multiple returns from water surfaces, the Euclidean clustering al-

gorithm [94,95] is used in order to divide points into separate clusters. However, if multi-

ple returns from waterbodies are present or expected in the area (e.g., due to presence of 

marshes), the first part is extended with the detection of points belonging to the water 

surface. To this end, plane fitting using the RANdom SAmple Consensus (RANSAC) 

method [84] was used. As authors [87] have noted, the extracted plane may contain false 

waterbodies. To remove points mistakenly marked as water, density and elevation char-

acteristics [96] of individual points were used. Afterwards, all the points marked as land 

are clustered using the aforementioned Euclidean clustering algorithm. 

The second part of the algorithm involves the indication of potential boundary points 

and the optimisation of the boundary composed from them. The authors [87] proposed a 

novel method, which involves the minimum-cost path model for optimising the coastline 

cost function, and a testing algorithm for identifying potential boundary points from all 

of the candidate (land) points. 

As presented in Figure 5, the algorithm for coastline extraction, proposed by [87], 

comprises five steps, two of which are optional and are only executed when large portion 

of the point cloud is associated with water returns. All of the steps presented in Figure 5 

were briefly described below: 
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1. This step is only performed if the user marks the original LiDAR point cloud, which 

contains many water returns. Classification of particular clusters as water or land 

clusters based on the assumption of water area flatness. To this end, plane fitting by 

the RANSAC method is used [97]. Successive steps of the RANSAC algorithm when 

solving the plane fitting problem can be described as follows [95]: 

• Randomly select three non-collinear points p from the set of points P; 

• Based on the selected points, calculate the coefficients of the plane model equa-

tion; 

• Calculate the distance between the plane model and each point p; 

• Calculate the number of points p whose distance from the plane is smaller than 

the threshold value Є provided by the user. 

The RANSAC algorithm is iterative in nature. Its performance is repeated for a max 

of N times until the percentage of the points located within the tolerance limits Є is 

no greater than τ [98]. According to the authors [87], the above approach allows for 

identification of waterbodies larger than 500 m × 500 m. 

2. This step is only performed if the user marks the original LiDAR point cloud, which 

contains many water returns. Verification of the completed classification of water ar-

eas based on the density and distance indicators [96] calculated for individual points. 

This is because the reflections from the water surface, identified based on the flatness 

index, can also originate from flat land areas. At this stage, two characteristics are 

calculated: point density (D), which is calculated in a rectangular window of the pre-

defined size for every point in the cloud and the elevation of each point in the cloud 

above its nearest extracted plane (E). The above characteristics allow for reclassifica-

tion of points. Points are converted to the land class if the point density Dc calculated 

in the predefined window is greater than the adopted threshold value TD: 

C D
D T

  (13) 

Moreover, selected points are removed from the LiDAR cloud. A point is removed if 

its elevation above the nearest plane E is greater than the threshold value Te: 

e
E T

 (14) 

3. Clusterisation of points classified as land (or all points in case the previous steps were 

not performed) based on the Euclidean cluster extraction method [94,95,99]. The re-

jection of clusters containing fewer than np points. It should be noted that if not too 

many reflections from water were noted during laser scanning, this stage already 

enables a significant reduction in water points in the cloud. Otherwise (e.g., in shal-

low waterbodies), this procedure will not ensure the removal of water points from 

the cloud [84], hence why authors [87] proposed the two optional steps for the case 

of abundant water reflections, which were described above. 

4. Selection of candidate boundary points using the test algorithm [87]. During the ini-

tialisation, all points are regarded as indeterminate ones. In each step, if point p is an 

indeterminate point, it is necessary to select its k-nearest neighbours and, based on 

them, to construct a convex hull. It should be noted that in the convex hull, point p is 

not a boundary point of the convex set S, if it is located within a triangle whose ver-

tices are located in S [100]. Hence, the points formed within the hull can be regarded 

as points that do not form the coastline. This process is iteratively repeated until there 

are no more points that can be eliminated in the above manner. Moreover, if a point 

is located further than Td from the remaining points, it will be regarded as an error 

and immediately removed. A problem at this stage of the algorithm operation is the 

ambiguity of determining the coastline course based on the obtained set of points. 
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For example, for 5 points, it is possible to indicate many different ways to combine 

them, thus obtaining many different potential coastline courses (Figure 6). 

 

Figure 6. The ambiguity problem of determining the coastline course based on a set comprising five 

points. Own study based on [87]. 

5. Boundary optimisation based on the cost function minimisation method [87]. As 

there are many potential coastline courses, it is necessary to define the criterion for 

assessing individual connections. It is proposed that the principle of parsimony 

should be used [101], according to which, if a particular phenomenon or process can 

be explained in many ways, the one with the lowest cost (the simplest and most eco-

nomical) will be the most probable. In order to assess the cost of coastline formation, 

the boundary cost β (m) is defined as follows: 

( )
 

 
= 

  
  = +
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,
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2
i j

n
i j

i
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B B
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(15) 

where: 

n—number of connections in the formed boundary (–), 

D(Bi)—length of the connection Bi (m), 

λ—weight coefficient (–), 

N—number of connections in the formed boundary (–), 

<Bi,Bj>—angle between connections Bi and Bj (°). 

It should be noted that the minimisation of Equation (15) occurs when the boundary 

points are located close to each other, and the angles between individual connections 

are wide (Figure 7). 
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Figure 7. Visualisation of the weights calculated for individual coastline connections. Own study 

based on [87]. 

The parameter values adopted in steps 1–5 are set by the user. The authors [87] pre-

sented the values proposed by them (Table 6), noting that the method may need to be 

parameterised for a specific waterbody. 

Table 6. The parameters of the method proposed by [87] along with the value ranges, the suggested 

values, and the unit. 

Stage Parameter Range Suggested Value Unit 

Removal of waterbodies 

np 500–10,000 500 pt 

Te 0.5–5 2 m 

TD 0.1–0.5 0.3 pt/m2 

Coastline optimisation 

k 20–100 50 pt 

Td 0.5–3 2 m 

𝜆 1–10 3 – 

Tb 0.1–1 0.5 m 

It is worth noting that the method proposed by [87] contains several underlying pa-

rameters, which were not mentioned by the authors. An example of such parameter is 

cluster tolerance argument used in the Euclidean clustering algorithm [94,95,99]. The im-

plementation of the coastline extraction method [87] will allow to address this gap by 

careful identification of all of the parameters used in the extraction method during the 

software development process and their suggested ranges during the validation process. 

Full availability of data enables for robust verification of the correctness of the implemen-

tation process and should provide answers to the above issues. Moreover, as authors have 

noted, it is possible to modify the energy function (e.g., by adding curvature information 

to smooth the boundary in erosion regions). Therefore, the method implementation is in-

teresting in the context of the possibility of its further enhancement and development. 

3. Discussion and Conclusions 

The model for the integration of data acquired by UAVs and USVs for the purposes 

of bathymetric monitoring shallow waterbodies (the INNOBAT system) will comprise 

three technology components. The first of them is the hydroacoustic and optoelectronic 

data integration component proposed by Dąbrowski et al. [45]. The accuracy analysis 

showed that the standard deviations of the differences between the coordinates modelled 

by Dąbrowski’s method in relation to the reference coordinates amounted to easting, 
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northing, and height coordinates, respectively: 0.022 m, 0.040 m, and 0.019 m. A criterion 

for the selection of this method was the accuracy of the geospatial data harmonisation 

from among all the analysed methods [22,45–47]. The second criterion is the radiometric 

depth determination component based on optoelectronic data using the SVR method [59]. 

The accuracy analysis showed that the standard deviation of the depth measurement error 

was 0.11–0.19 m for depths ranging from 0.1 to 5.57 m. The criteria for the selection of this 

method included the depth measurement accuracy, hydrometeorological conditions oc-

curring during the performance of photogrammetric surveys and the measurement equip-

ment used from among all the analysed methods [12,57–61]. The third criterion is the 

coastline extraction component proposed by Xu et al. [87] An accuracy analysis showed 

that the standard deviation of the error in determining the shoreline position was 1 m. 

The criteria for the selection of this method included the automation of the extraction pro-

cess and the accuracy of determining the coastline position from among all the analysed 

methods [80–86]. 

The INNOBAT system will enable, as compared to other popular bathymetric moni-

toring systems, such as: hydroacoustic sounding in ultra-shallow waterbodies using clas-

sical manned vehicles [29] and methods for determining waterbody depths using high-

resolution satellite images [30–32], the accurate and precise measurement of the entire 

coastal relief based on the data acquired from UAV and USV, as well as three proposed 

technology components. Multisensor data fusion acquired from autonomous unmanned 

aerial and surface vehicles will allow to meet the requirements provided for the IHO Spe-

cial Order (horizontal position error ≤ 2 m (p = 0.95), vertical position error ≤ 0.25 m (p = 

0.95)). 

The operational requirements of the INNOBAT system are as follows. An UAV must 

be equipped with a GNSS/INS system operating in the RTK mode, a LiDAR, and a pho-

togrammetric camera. A photogrammetric flight should be made at an appropriate height 

(up to 100 m), so that it is smaller than the LiDAR range and the Ground Sampling Dis-

tance (GSD) does not exceed 2 cm. When it comes to the water transparency, it should be 

approx. 2 m. This is due to the fact that manned vessels, on which echo sounders are 

mounted, perform bathymetric measurements to a min. safe operational depth of approx. 

2 m. As for the USV, it must be equipped with a GNSS/INS system operating in the RTK 

mode and a MBES. Hydrographic surveys shall be performed in windless weather and 

the water level is 0 in the Douglas sea scale (no waves or sea currents). However, the 

mission with the use of an UAV should take place in appropriate meteorological condi-

tions, i.e., no precipitation, windless weather (wind speed not exceeding 6–7 m/s), sunny 

day. 

Incorrect bathymetric monitoring of shallow waterbodies and those with high dy-

namics of hydromorphological changes can result in an adverse impact on the aquatic 

environment and humans. Therefore, the development of bathymetric monitoring sys-

tems seems necessary due to the fact that in recent years, there has been a very rapid im-

provement of measurement techniques (UAV and USV) enabling the implementation of 

hydrographic surveys in shallow waterbodies, as well as computational techniques for 

modelling the seabed relief. 
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