Objective.In this work, an analytical framework for the multiscale analysis of multivariate Gaussian processes is presented, whereby the computation of Partial Information Decomposition measures is achieved accounting for the simultaneous presence of short-term dynamics and long-range correlations.Approach.We consider physiological time series mapping the activity of the cardiac, vascular and respiratory systems in the field of Network Physiology. In this context, the multiscale representation of transfer entropy within the network of interactions among Systolic arterial pressure (S), respiration (R) and heart period (H), as well as the decomposition into unique, redundant and synergistic contributions, is obtained using a Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This novel approach allows to quantify the directed information flow accounting for the simultaneous presence of short-term dynamics and long-range correlations among the analyzed processes. Additionally, it provides analytical expressions for the computation of the information measures, by exploiting the theory of state space models. The approach is first illustrated in simulated VARFI processes and then applied to H, S and R time series measured in healthy subjects monitored at rest and during mental and postural stress.Main Results.We demonstrate the ability of the VARFI modeling approach to account for the coexistence of short-term and long-range correlations in the study of multivariate processes. Physiologically, we show that postural stress induces larger redundant and synergistic effects from S and R to H at short time scales, while mental stress induces larger information transfer from S to H at longer time scales, thus evidencing the different nature of the two stressors.Significance.The proposed methodology allows to extract useful information about the dependence of the information transfer on the balance between short-term and long-range correlations in coupled dynamical systems, which cannot be observed using standard methods that do not consider long-range correlations.

Pinto, H., Pernice, R., Eduarda Silva, M., Javorka, M., Faes, L., Rocha, A.P. (2022). Multiscale partial information decomposition of dynamic processes with short and long-range correlations: theory and application to cardiovascular control. PHYSIOLOGICAL MEASUREMENT, 43(8) [10.1088/1361-6579/ac826c].

Multiscale partial information decomposition of dynamic processes with short and long-range correlations: theory and application to cardiovascular control

Pernice, Riccardo;Faes, Luca;
2022-08-12

Abstract

Objective.In this work, an analytical framework for the multiscale analysis of multivariate Gaussian processes is presented, whereby the computation of Partial Information Decomposition measures is achieved accounting for the simultaneous presence of short-term dynamics and long-range correlations.Approach.We consider physiological time series mapping the activity of the cardiac, vascular and respiratory systems in the field of Network Physiology. In this context, the multiscale representation of transfer entropy within the network of interactions among Systolic arterial pressure (S), respiration (R) and heart period (H), as well as the decomposition into unique, redundant and synergistic contributions, is obtained using a Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian processes. This novel approach allows to quantify the directed information flow accounting for the simultaneous presence of short-term dynamics and long-range correlations among the analyzed processes. Additionally, it provides analytical expressions for the computation of the information measures, by exploiting the theory of state space models. The approach is first illustrated in simulated VARFI processes and then applied to H, S and R time series measured in healthy subjects monitored at rest and during mental and postural stress.Main Results.We demonstrate the ability of the VARFI modeling approach to account for the coexistence of short-term and long-range correlations in the study of multivariate processes. Physiologically, we show that postural stress induces larger redundant and synergistic effects from S and R to H at short time scales, while mental stress induces larger information transfer from S to H at longer time scales, thus evidencing the different nature of the two stressors.Significance.The proposed methodology allows to extract useful information about the dependence of the information transfer on the balance between short-term and long-range correlations in coupled dynamical systems, which cannot be observed using standard methods that do not consider long-range correlations.
Settore ING-INF/06 - Bioingegneria Elettronica E Informatica
https://iopscience.iop.org/article/10.1088/1361-6579/ac826c
Pinto, H., Pernice, R., Eduarda Silva, M., Javorka, M., Faes, L., Rocha, A.P. (2022). Multiscale partial information decomposition of dynamic processes with short and long-range correlations: theory and application to cardiovascular control. PHYSIOLOGICAL MEASUREMENT, 43(8) [10.1088/1361-6579/ac826c].
File in questo prodotto:
File Dimensione Formato  
2022_Pinto_PhysiolMeasurement_postprint.pdf

Solo gestori archvio

Descrizione: Post-print
Tipologia: Post-print
Dimensione 948.46 kB
Formato Adobe PDF
948.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2022_Pinto_PhysiolMeasurement_preprint.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Dimensione 626.15 kB
Formato Adobe PDF
626.15 kB Adobe PDF Visualizza/Apri
2022_Pinto_PhysiolMeasurement_published.pdf

Solo gestori archvio

Descrizione: Versione editoriale pubblicata
Tipologia: Versione Editoriale
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/567503
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact