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Abstract

Objective. In this work, an analytical framework for the multiscale analysis of multivariate Gaussian
processes is presented, whereby the computation of Partial Information Decomposition measures is
achieved accounting for the simultaneous presence of short-term dynamics and long-range correlations.
Approach. We consider physiological time series mapping the activity of the cardiac, vascular and
respiratory systems in the field of Network Physiology. In this context, the multiscale representation of
transfer entropy within the network of interactions among Systolic arterial pressure (S), respiration (R)
and heart period (H), as well as the decomposition into unique, redundant and synergistic contributions,
is obtained using a Vector AutoRegressive Fractionally Integrated (VARFI) framework for Gaussian
processes. This novel approach allows to quantify the directed information flow accounting for the
simultaneous presence of short-term dynamics and long-range correlations among the analyzed
processes. Additionally, it provides analytical expressions for the computation of the information
measures, by exploiting the theory of state space models. The approach is first illustrated in simulated
VAREFI processes and then applied to H, S and R time series measured in healthy subjects monitored at
rest and during mental and postural stress. Main Results. We demonstrate the ability of the VARFI
modeling approach to account for the coexistence of short-term and long-range correlations in the study
of multivariate processes. Physiologically, we show that postural stress induces larger redundant and
synergistic effects from S and R to H at short time scales, while mental stress induces larger information
transfer from S to H at longer time scales, thus evidencing the different nature of the two stressors.
Significance. The proposed methodology allows to extract useful information about the dependence of
the information transfer on the balance between short-term and long-range correlations in coupled
dynamical systems, which cannot be observed using standard methods that do not consider long-range
correlations.

1. Introduction

Cardiovascular oscillations result from the activity of several coexisting control mechanisms also interconnected
with respiratory activity and, as a consequence, exhibit a complex dynamical structure (Cohen and Taylor 2002).

© 2022 Institute of Physics and Engineering in Medicine
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The action of these simultaneously active and intertwined mechanisms occurs in multiples time scales and is
reflected in the spontaneous beat-to-beat variability of the Heart Period (H) and Systolic Arterial Pressure (S)
continuously interacting with Respiratory activity (R). The multivariate and simultaneous analysis of
cardiovascular oscillations can be very helpful to understand the network of interconnections among variables,
sheddinglight on the combined activity of physiological mechanisms like the baroreflex and the Respiratory
Sinus Arrhythmia (RSA) (Berntson et al 1993, Lanfranchi and Somers 2002). Heart rate variability (HRV), i.e. the
changes in the time intervals between consecutive heartbeats, differs in relation to the time scale at which
processes are observed, corresponding to a given frequency of heart rate oscillations. Coupling and causality
between the regulatory processes can be associated to specific time scales of oscillatory activity. Therefore, it is
important to characterize the mechanisms and interactions governing heart rate variability on various time
scales (Faes et al 2004, Cerutti et al 2009). Another important feature of the cardiovascular control mechanisms
and cardiorespiratory interactions is the presence of long range correlations, resulting in slowly varying
dynamics (Xiong et al 2017, Faes et al 2019, Martins et al 2020).

Cardiovascular and cardiorespiratory interactions are often studied using information-theory applied to the
dynamics of the H, S and R time series (Faes eral 2015, 2017). In particular, emerging information-theoretic
approaches such as the so-called ‘Partial Information Decomposition’ (PID) and the ‘Interaction Information
Decomposition’ (IID) allow assessing the information transfer among the multiple nodes of a network system
(Lizier et al 2018). Such approaches can be contextualized within the general field of ‘Network Physiology’,
which describes the human body as an integrated network where multiple organs continuously interact with
each other reflecting various physiological and pathological states (Bashan et al 2012, Ivanov 2021). The IID and
PID frameworks have been used to decompose, in a network composed of multiple processes, the information
flowing from two sources to a target into unique contributions related to each individual source, and to separate
synergistic and redundant contributions.

The present study aims to extend multiscale partial information decomposition (Faes et al 2017) to the
combined analysis of short-term and long-range correlations among coupled processes, and to employ the
extended approach to quantify the amount of information transferred among the H, S, and R processes, as well
as to identify the type of interaction (synergistic or redundant) between two processes while they transfer
information to the third. To this end, we propose a method using vector autoregressive fractionally integrated
(VARFI) models which provides the multiscale representation of the VARFI parameters using the theory of state
space models, thereby allowing to extract from such parameters multiscale and multivariate information
transfer measures (Faes et al 2019, Martins et al 2020, Pinto et al 2021). The advantages of this method resides in
its parametric formulation that permits to work reliably on short time series and in the operation of fractional
integration that allows to take into account not only short-term dynamics, but also the long-range correlations.
Furthermore, decomposing the information allows assessing the directionality of the interactions, which has not
been done in previous works (Faes et al 2019, Martins et al 2020) where information measures like the
complexity and the information storage were used.

This approach is first tested in simulations of a benchmark VARFI model and then applied to experimental
data consisting of H, S and R time series measured in healthy subjects monitored in a relaxed physiological
condition (supine position) and during two types of stress: postural stress provoked by head-up tilt and mental
stress induced by mental arithmetic test.

2. Methods

Let us consider a dynamical system X’ whose activity is defined by a discrete-time, stationary vector stochastic process
composed of M real-valued zero-mean scalar processes Xj,, withj=1...M, X, = [Xj , -+ Xyal'y —00 < n < oo
The past of the scalar processes is denoted as X in = Xjn1 Xju—2-]. With this notation, in the following we
present our methodology to assess information decomposition in multiple processes accounting for short-term
dynamics and long-range correlations.

2.1.Information Transfer and Modification

In an information-theoretic framework, the directed transfer of information between scalar sub-processes is
assessed by the Transfer Entropy (TE). Specifically, the TE quantifies the amount of information that the past of
the source provides about the present of the target process over and above the information already provided by
the past of the target itself (Schreiber 2000). Transfer entropy between the source process component i and the
target component j is defined as

Ty = 106 X015, M
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whereI( - ; - | - ) denotes conditional Mutual Information (MI) (Cover and Thomas 2005). Considering two
sources X;and X and a target Xj, the information transferred towards X; from the sources X; and X taken
together is quantified by the joint TE (JTE)

Tikﬁj = I(Xj)n; Xi,_n’ X,;an;n) (2)

Generally, the joint TE differs from the sum of the two individual TEs, since the source processes (i, k)
typically interact with each other while they transfer information to the target process, j. The joint TE (2) can be
decomposed under an Interaction Information Decomposition (IID) framework as (Faes et al 2017)

Tik—j = Tioj + Tisj + L) 3)

where I;_,;is denoted as Interaction Transfer Entropy (ITE) since it is equivalent to the interaction information
(McGill 1954) computed between the present of the target and the past of the two sources, conditioned on the
past of the target

Ti—j = T X X Xial XG0 4)

i,1n>

The ITE quantifies the modification of the information transferred from the source processes X; and X to
the target X;. The ITE can take positive and negative values. Positive values of I;;_,; denote synergy, where the
joint TE is greater than the sum of the two individual TEs (Tjx—; > T;_.; + Ti;). In contrast, negative values of
Iix_jrefer to redundancy, which occurs when the information transferred from the sources to the target
overlapped, meaning that the sum of individual TEs is larger than the joint TE (T;—; + Ti—; > Tix—)).

The main drawback of IID is that the interaction TE is quantified using only one measure, and thus makes
redundancy and synergy mutually exclusive. This disadvantage can be overcome by the Partial Information
Decomposition (PID) (Williams and Beer 2010) encompassing four distinct positive quantities (Faes et al 2017)

Tix—j = Uisj + Ukwj + Riksj + Sik—j> (54)
Tinj = Uinj + Ricsjs (5b)
Ti—j = Uroj + Rigsje (50)

The terms U;_,jand Uj_jquantify the parts of the information transferred to the target process X;, which are
unique to the source processes X; and X, respectively, thus reflecting contributions to the predictability of the
target that can be obtained from one of the sources alone. Then, the terms Rj;_,;and Sj._,; quantify the redundant
and synergistic interaction between the two sources and the target, respectively.

When compared to IID (3), the PID (5) has the advantage that it provides distinct non-negative measures of
redundancy and synergy, therefore allowing the simultaneous presence of redundancy and synergy as distinct
elements of information modification. Moreover, the IID and PID are related to each other as

Il'k*?j = Sl’kﬂj - Rikﬂj) (6)

thus showing that the interaction TE is actually a measure of the ‘net’ synergy manifested in the transfer of
information from the two sources to the target (Krohova et al 2019).

The main issue with the PID (5) is that its constituent measures cannot be obtained from the classic
information theory simply subtracting conditional MI terms, as done for the IID. Therefore, to complete the
PID an additional ingredient to the theory is needed to get a fourth defining equation to be added to (5) for
providing an unambiguous definition of U;_;, Ux_.j, Rix—;and Sj._,;. Several PID definitions have been
proposed arising from different conceptual definitions of redundancy and synergy (Harder et al 2013,
Bertschinger et al 2014, Griffith et al 2014). Here we make reference to the so-called Minimum Mutual
Information PID (MMI-PID) (Barrett 2015). In this approach, redundancy is defined as the minimum of the
information provided by each individual source to the target. This leads to the following definition of the
redundant TE

This definition satisfies the desirable property that the redundant TE is independent of the correlation
between the source processes. Furthermore, if the observed processes have a joint Gaussian distribution, all
previously-proposed PID formulations reduce to the MMI PID (Barrett 2015).

2.2.Vector autoregressive fractionally integrated model

The classic parametric approach to describe linear Gaussian stochastic processes exhibiting both short-term
dynamics and long-range correlations is based on representing an M-dimensional discrete-time, zero-mean and
unitary variance stochastic process X,, as a Vector Autoregressive Fractionally Integrated (VARFI) process fed by
uncorrelated Gaussian innovations E,.. The VARFI(p, d) process is expressed as (Tsay 2010)

3
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A(L)diag(VY)X, = E,, )

where L is the back-shift operator (L'X,, = X,,_;), A(L) = Iy — P IA,-Li (Ips1s the identity matrix of size M)

is a vector autoregressive (VAR) polynomial of order p defined by the M x M coefficient matrices A;,...,A,, and

(1 — L)n 0 0
dagvh=| O B0
6 6 .o —'L)dM
and (1 — L)%, i = 1,...,M,isthe fractional differencing operator defined by:
(1 - L)%= kio GILY, G = —F(fg);(;i o’ ©)

with I'( - ) denoting the Gamma (generalized factorial) function. The VARFI model is stationary when all the
roots of det[A (L)] are outside the unit circleand — 0.5 < d; < 0.5 fori = 1...M, while it is nonstationary but
mean reverting for 0.5 < d; < 1 (Baillie 1996, Velasco 1999). The coefficients of the polynomial A(L) allow the
description of the short term dynamics, while the parameter d = (d,,...,d),) in equation (8) determines the
long-term behavior of each individual process.

The parameters of the VARFI(p, d) model (8), namely the coefficients of A(L) and the variance of the
innovations X = E[ELE,], are generally obtained from process realizations of finite length first estimating the
differencing parameters d; using the Whittle semi-parametric local estimator (Beran et al 2016) individually for
each process X; then defining the filtered data X i()z) = (1 — L)%X;,; and finally estimating the VAR parameters

from the filtered data X'/’ using the ordinary least squares method to solve the VAR model A(L)X'/) = E,, with
model order p assessed through the Bayesian information criterion (Faes et al 2012).

Here, we approximate the VARFI process (8) with a finite order VAR process by truncating the fractional
integration at a finite lag g, as follows

q q
diag(VY) ~ G(L) = diag| > G{"’IF ... > GMI*
k=0 k=0
q q
=>" diag[G{",...GMLF = > GiIL~. (10)
k=0 k=0
This allows us to express the VARFI(p, d) process as a VAR(m) process, withm =p + g
B(L)Xn = Em (11)
with the coefficients in B(L) given by
P (.4 pta
B(L) = AL)G(L) = |Iy = DAL || D GeLF | =1y — >, BiLk, (12)
i=1 k=0 k=0

yielding, for g > p,
BO = IM)

k
—Gr + ZAin,,', k=1,...p
i=1
p
Bi={-Gik+ > AiGiei» k=p+1...,9 . (13)
i=1
ptack
Z A,‘+k,qu,,‘, k= q+1,...9g+p
i=0

2.3. Multiscale representation of VARFI processes

In this section, we describe how to compute the information measures defined in section 2.1 across multiple
temporal scales, under the hypothesis that the analyzed multivariate process is appropriately modeled by the
VAREFI representation provided in section 2.2. The procedure for multiscale analysis extends the rescaling
approach proposed in (Faes et al 2017). Here only the fundamental steps are presented, the mathematical details
are provided in (Faes et al 2017) and in the Appendixes of (Martins et al 2020).

Typically, to represent a scalar stochastic process at the temporal scale defined by the scale factor 7, a two-
step procedure is employed which consists in first filtering the process with a low pass filter with cutoff frequency
f,=1/(27), and then downsampling the filtered process using a decimation factor 7 (taking one every 7 samples)
(Porta etal 2006, Faes et al 2017). Extending this approach to the multivariate case, we first implement the

4
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following linear finite impulse response (FIR) filter
X" = D)X, (14)

where r denotes the filter order D(L) = Y} _ , LDy L¥, and the coefficients of the polynomial Dy, k = 1,...,r,
are the same for all scalar processes X; € X and are chosen to set up alow pass FIR configuration with cutoff
frequency 1/(27).This step transforms the VAR(p + q) process (11) into a VARMA(p + ¢, r) process with
moving average (MA) part determined by the FIR filter coefficients

B(L)X" = D(L)B(L)X,, = D(L)E,. (15)

Then, we exploit the connection between VARMA processes and state space (SS) processes (Aoki and
Havenner 1991) to evidence that the VARMA process (10) can be expressed in SS form as

Zgll — B(r)Zf{) + K(r)E;f)) (16a)
X" = cnz® 4 g0, (16b)

where Z) = X, ... X E, | --- E,_]"isa(m + r) - dimensional state process, E” = DE, is the S
innovation process, and the vectors K” and C” and the matrix B can be obtained from B(L) and D(L). Further
details can be found in appendix B of (Martins et al 2020).

In the second step of the rescaling procedure, the filtered process is downsampled in order to complete the
multiscale representation. This is achieved by applying the results in, (Barnett and Seth 2015, Solo 2016, Faes et al
2017) which allow describing the filtered SS process after downsampling in the form

Zﬂl — B™ fo) 4 K(T)ESIT), (17a)
XS’) - C(T)ZS') + ES')_ (17b)

equations (17) provide the SS form of the filtered and downsampled version of the original VARFI(p, d) process,
and parameters (B, C(, K™, Y1) can be obtained from the SS parameters before downsampling and from
the downsampling factor 7.

2.4. Multiscale information transfer and modification
In this section, we show how to compute analytically the information decomposition of a jointly Gaussian
multivariate stochastic process starting from its associated SS model (17).

The derivations are based on the knowledge that the linear parametric representation of Gaussian processes
captures all the entropy differences that define the various information measures (Barrett et al 2010). These
entropy differences are related to the partial variances of the present of the target conditioned to its past and the
past of one or more sources. The partial variances can be formulated as variances of the prediction errors
resulting from linear regression (Faes et al 2015, 2017). Specifically, let us denote as E; j n = Xjn — BIXnlXj ]

and Ejjjj» = Xj,n» — BIX;ulXj,, Xj,]the prediction errors of a linear regression of X, on X; , and (X; ., X; ,,),
respectively. Then, the TE from X; to X can be expressed as
Xk,
T = ln =2, (18)
2 ZEJW
Similarly, the joint TE from (Xj, Xj) to X;can be defined as
DI
Ty = 5l 22, (19)

Ej

where X E = E[Ej%n] is the variance of the prediction error of a linear regression of X; , on X, E; , = X; , —
E[X; 41X, ]. Based on these derivations, one can easily complete the IID decomposition of TE by computing Tj_;
asin (18) and deriving the interaction TE from (3) and the PID decomposition, as well by deriving the redundant
TE from (7), the synergistic TE from (6) and the unique TEs from (5).

Finally, we show how to compute any partial variance from the parameters of an SS model in the form (17) at
any assigned time scale 7 (Barnett and Seth 2015, Solo 2016). The partial variance 3 B where the subscript a
denotes any combination of indexes € {1,...,M}, can be derived from the SS representation of the innovations
of asubmodel obtained removing the variables not indexed by a from the observation equation. Specifically, we
need to consider the submodel with state equation (174) and observation equation

X =cPzy + EY), (20)

where the additional subscript , denotes the selection of the rows with indices a in a vector or a matrix. These
submodels can be converted to the SS form as in (17), with innovation covariance X E» SO that the partlal
variance ¥, o is derived as the diagonal element of 2y corresponding to the posmon of the target X; ,, (Faes et al
2017, Martlns etal 2020).
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Figure 1. Graphical representation of the trivariate VAR process of equation (21) with parameters set according to reproduce realistic
cardiovascular cardiorespiratory dynamics together with cardiorespiratory interactions.

Table 1. Parameters of VAR model (21) that determine
the short term dynamics of the VARFI process.

Couplinga,,, Poles
Process R S H p f
R - - - 0.9 0.25
S 1 — 0.1 0.8 0.1
H 1 0.4 - 0.8 0.1

3. Simulation study

In this section, we investigate the behavior of the information measures in the presence of long term correlations
and considering oscillations and interactions commonly observed in cardiovascular and cardiorespiratory
variability. We start with a VAR process with short term dynamics described by the benchmark model (Faes et al
2017):

R, =2p, - cos2nf - R,_; — pf “Ry—2+ E.,
Sn = 205 : COSZWfS : Snfl - Pf : Sn—Z + s - Hn—Z + Asr * Rnfl + Es,n
Hn = 2,0;, - COS 27Tfh . Hn—l - Pi : Hn—2 + Ap,s Sn—l + apr - Rn—l + Eh,n (21)

where E,, = [E, ,,, E; ,, Ej.,]isavector of zero mean white Gaussian noises of unit variance and uncorrelated
with each other (3z = I). We set the parameters to reproduce oscillations and interactions commonly observed
in cardiovascular variability in context of cardiorespiratory interactions, figure 1 (Malliani et al 1991), i.e, the
self-sustained dynamics typical of Respiration (R, p, = 0.9, f, = 0.25) and the slower oscillatory activity
commonly observed in the so-called low frequency band in the variability of Systolic Arterial Pressure

(S, p, = 0.8, f, = 0.1)and Heart Period (H, p, = 0.8, f, = 0.1). The remaining parameters identify causal
interactions between processes, which are set from R to S and from R to H (both modulated by the parameter
a,, = ay,,= 1) to simulate the well-known respiration-related fluctuations of arterial pressure and heart rate,
and along the two directions of the closed loop between S and H(a, , = 0.1, a;, ; = 0.4) to simulate bidirectional
cardiovascular interactions. All these parameters, summarized in table 1, were chosen to mimic the oscillatory
spectral properties commonly encountered in short-term cardiovascular variability considering the cardior-
espiratory interactions.

Next, we provide an approximated simulation of a VARFI process by using the truncation method (10)
introduced in section 2.3, whereby the vector d = (d,, d;, d},) is provided to assess fractional integration of the
three original processes. With this approach, two simulations are carried out: in Simulation 1 the long range
parameters of both R and H processes are kept fixed, while the parameter d; is increased from 0 to 0.7 (20 points
equally spaced on this interval). Then, in Simulation 2 the long range correlations d components of the Rand S
are fixed and the component of H process is increased from 0 to 0.7. In both simulation experiments, we
consider the H process as target and the remaining processes R and S as sources. Therefore, in the first
experiment we vary the long memory parameter of only one source (in this case S) and in the second we fixed the
dparameters of the sources and increased the long memory of the target process. Figure 2 reports the results of

6
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RS »H RS > H RS > H
0.2 0.25 0.4
(a5) (a6)

1 5 10 15 20 25 30

(a) Vary the long range parameter d; of the S process (source).

TR~>H TSAH TR,S»H
0.35 pa 0.4 ®2) 0.7 pe
—dh=0
0.6
—dh=0.4
0.5 —d, =07
0.4
0.3
0.2
0.1
0
1 5 10 15 20 25 30
IR,S —H SR,S —H

0.4

(b4) (b6)

1 5 10 15 20 25 30
Scale 7

(b) Vary the long range parameter dj, of the H process (target).

Figure 2. Theoretical profiles of Tr_, 11, sz, Tr,s— > Ir,s— 1> Rr,s—mand Sg s py for a VARFI process. (a) Simulation 1: the long
memory parameters d, = 0.1 and d, = 0.45 (source and target) are kept fixed, while d; is varied from 0 (blue) to 0.7 (red). Note that for
Tr_pall the profiles coincide, as the long range correlation parameters of R and H are the same for all combinations of the simulated d
vectors. (b) Simulation 2: the long memory parameters of the source processes are fixed at the values d, = 0.1, d; = 0.25, while the long
memory parameter for the target is increased from d;, = 0 (blue) to dj, = 0.7 (red).

the individual TEs (1), the joint TE (2), the interaction TE (4), the redundant TE (7) and the synergistic TE (6)
computed for the overall VARFI process.

In figure 2(a), when d, increases, we observe a decrease of the individual TE from S to H and of the joint TE
from R, Sto H (panels a2 and a3). On the other hand, the ITE increases, suggesting an augmented synergy

7
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compared to redundancy. This behavior is better observed when we look at redundancy and synergy separately:
comparing the values of these two measures it is visible that as d, increases synergy is prevalent in relation to
redundancy as the latter takes lower values, particularly in the first 10 time scales (panels a4, a5 and a6).

When we vary the long range parameter of the target process, in this case H, we observe opposite trends, as
seen in figure 2(b): the individual and joint information transfer at longer time scales increase with dj, (panels b1,
b2 and b3), and the ITE decreases denoting an increased redundancy. As before, this behavior is clearer when we
analyze redundancy and synergy as two distinct elements of information: as dj, increases, redundancy assumes
higher values when compared to synergy, particularly on longer time scales, panels b4, b5 and b6.

In summary, our simulations show that the presence of long-range correlations in the source process
decreases the information transfer and increases the prevalence of synergy over redundancy, while the opposite
behavior (i.e. higher transfer of information and higher redundancy) occurs when long-range correlations are
manifested in the target process. These tendencies can explain the role played by long-memory on the transfer of
information in complex networks.

4. Cardiovascular signals analysis

In this section we apply the proposed approach on experimental data, computing the information measures on
cardiovascular and respiratory time series: the heart period (H), systolic arterial pressure (S), and respiration (R).
The interaction between the dynamics of these series has been the subject of intense study (Faes et al
2004,2011a,2011b, Portaetal 2012, Krohova et al 2019), which motivates their use in a multivariate context.
Recent studies have pointed out the intertwined nature of the measures of information dynamics, and the
requirement to combine their evaluation to circumvent misinterpretations about the intrinsic network
properties (Chicharro and Ledberg 2012, Faes et al 2015, Porta et al 2016). In addition, the specificity of measures
of information storage and transfer is frequently limited by the fact that their definition incorporates multiple
aspects of the dynamical structure of network processes; the flexibility of information measures allows to
overcome this limitation by decomposing the measures into meaningful quantities (Porta er al 2015). The most
studied variable in cardiovascular spontaneous variability is HRV (Malik 1996, Shaffer and Ginsberg 2017,
Pernice et al 2019). This variable reflects cardiovascular complexity, strongly interacts with S and Rand
represents the capability of the organism to react to environmental and psychological stimuli. For this reason, in
the analysis of experimental time series we focus mainly on taking H as the target process for the analysis of
information decomposition, as done in several previous studies (Faes et al 2004, 2011a, 2011b, Porta et al 2012,
Krohova et al 2019). Nevertheless, in a first attempt to investigate with our tools also different physiological
mechanisms, we consider also S and R as target processes in some additional analyses. The assumptions of
stationarity and joint Gaussianity that underlie the methodologies presented in this paper are largely exploited in
this multivariate analysis, and are usually assumed to hold when realizations of the cardiac, vascular and
respiratory processes are obtained in well-controlled experimental protocols designed to achieve stable
physiological and experimental conditions (Baselli et al 1994, Triedman et al 1995, Patton et al 1996, Cohen and
Taylor 2002, Xiao et al 2005, Faes etal 2012).

4.1. Experimental protocol

The cardiovascular and respiratory time series were measured in a group of 61 healthy subjects (19.53.3 years
old, 24 males) monitored in the resting supine position (SU;), in the upright position (UP) reached through
passive head-up tilt, in the recovery supine position (SU,) and during mental stress induced by mental
arithmetic test (MA). The head-up tilt protocol consisted in tilting the motor-driven bed table where the subject
was lying to 45 degrees in order to evoke mild orthostatic stress. During the MA task the subjects were instructed
to sum up three-digit numbers displayed on the ceiling of the examination room by a data projector, and to
decide whether the final one-digit number was odd or even pushing the button projected on the ceiling. During
the whole protocol, the volunteers were asked to avoid disturbing movements and speaking (Javorka et al 2017).
During all measurements, the subjects were free-breathing. The study was approved by Ethical Committee of the
Jessenius Faculty of Medicine, Comenius University (Slovakia) and all participants signed a written informed
consent. More details about the experimental protocol are reported in (Javorka et al 2017).

The acquired signals were the surface electrocardiogram (ECG, horizontal bipolar thoracic lead; CardioFax
ECG-9620, NihonKohden, Japan), the finger arterial blood pressure (Finometer Pro, FMS, Netherlands)
recorded noninvasively by the volume-clamp photoplethysmographic method, and the respiration signal
recorded through respiratory inductive plethysmography (RespiTrace, NIMS, USA). All measured signals were
digitised at 1000 Hz. For each subject and experimental condition, the values of H, S and R were measured on a
beat-to-beat basis respectively as the sequences of the temporal distances between consecutive R peaks of the
ECG, the maximum values of the arterial pressure waveform taken within the consecutively detected heart
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periods, and the values of the respiratory signal sampled at the onset of the consecutively detected heart periods.
The three time series H, S and R were interpreted as realizations of the stochastic processes descriptive of the
cardiac, vascular, and respiratory dynamics. For each subject and condition, the analyzed multivariate process is
definedas X = [Xy, Xs, Xgr].

The analysis was performed on segments of at least 400 consecutive points, free of artifacts and deemed as
weak-sense stationary through visual inspection, extracted from the time series for each subject and condition.
Missing values and outliers were corrected through linear interpolation and, for H and when possible,
erroneous/ missing intervals were substituted by pulse intervals measured as the difference in time between two
consecutive S measurements (A, (1) = ts(n + 1) — ts(n)). The three time series were normalized to zero
mean and unit variance before multiscale analysis.

4.2. Data analysis
To compute the IID and PID measures, the approach based on complete VARFI model identification defined in
section 2.3 was applied. The VARFI model was identified first estimating the fractional differencing parameter
d;,i=1,...,3,individually for each time series using the Whittle estimator, then filtering the time series with the
fractional integration polynomial truncated at a lag g, and finally estimating the parameters of the polynomial
relevant to the short-term dynamics via least squares VAR identification. Theoretically, the VARFI is of infinite
order, hence the value of q has to be selected to approximate the VARFI process with a finite order VAR process.
Several previous studies (Bardet et al 2003, Faes et al 2019) defined g = 50 as an appropriate value for truncating
the VARFI process. By increasing g, we can obtain a more precise approximation of the fractional integration
part but with a higher computational cost, while a reduced value (and thus an excessive truncation) causes an
underestimation of the TE measures and the smoothing of the non-monotonic trends with the time scale (Faes
etal2019). The order p of the VAR model was assessed individually for each subject and in each phase of the
experimental protocol, by the Bayesian information criterion (BIC) (Martins et al 2020). Then, multiscale TE
measures were computed implementing FIR low pass filter of order r = 48, for time scales 7in the range (1,
...,12), which corresponds to low pass cutoff normalized frequencies f, = (0.5,...,0.04). The value r = 48 was set
according to previous settings (Faes et al 2019).

The differencing parameters d; were estimated individually for each time series in the interval [—0.5, 1]. For 3
individuals the estimated d; parameters were near to 1 which indicate that the estimated VARFI models were
nonstationary and thus only 59 subjects were considered for further statistical analysis.

4.3. Statistical analysis

Significant changes in the information transfer and modification measures across the pairs of experimental
conditions SU, versus UP and SU, versus MA are evaluated via a linear mixed-effects model, incorporating both
fixed and random effects (Pinheiro and Bates 2006). The fixed-effects (or factors) were condition and scale, while
the random-effect was the subject-dependent intercept that allows for the random variation between subjects.
Furthermore, the interaction between the factors is also considered. To assess the changes of interest, estimated
marginal means (EMM) (Searle et al 1980) are obtained for each difference, UP — SU; and MA — SU,, at each
time scale, 7 = 1,...,12. A Z-test is applied to check the significance of these differences at alevel p < 0.05 with
the Tukey correction for multiple comparisons.

Additionally, we used a similar approach to evaluate significant differences between measures, particularly,
between the individuals TEs from S to H and from R to H, and between the redundant and synergistic TEs, at
each time scale 7. This allows to ascertain which of the source processes, S or R, is prevalent in driving H ata
given time scale, or whether redundant effects are prevalent over synergistic ones. The comparison between
redundancy and synergy is also very important as it provides clues about the type of interactions between source
processes, making it possible to corroborate some physiological assumptions. In this case, the fixed-effects (or
factors) are measure and scale, and the random-effect is the subject-dependent intercept as in the previous case.
For both models, residuals were checked for whiteness. The packages 1me 4 (Bates etal 2015) and emmeans
(Lenth 2019) of the R software (R Core Team 2016) were used to build the models and to compute EMM,
respectively.

4.4. Results

The identification of the VAR model returned rather stable values of the model order: the median value was
p = 4 for each phase of the protocol, while the interquartile interval was [4, 5] for SU}, [3, 5] for UP, [3, 4] for
SU,, and [3, 4] for MA. The results of multiscale analysis performed for the IID terms as defined in

equations (1)—(4) as well for the redundant and synergistic TEs of the PID equations (5) (Rj—,; and Si_; ) are
provided next.
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(b) Recovery Supine Position (SUsg) versus Mental Arithmetic's (MA).

Figure 3. Median and quartiles of the information measures, considering H as the target process, across subjects during: (a) resting
supine (SUj) and postural stress (UP); (b) the recovery supine (SU,) and mental stress (MA).

First, we analyze the multiscale interactions when the heart period time series was considered as the target,
and the systolic pressure and respiration were considered as the sources. Figure 3 presents the median and
quartiles across subjects of the six information measures computed as a function of the time scale 7 = 1,...,30,
for SU; versus UP, panel (a) and SU, versus MA, panel (b). Statistically significant changes (p < 0.05) in TE
measures at each time scale across the pairs SU; versus UP or SU, versus MA are marked with . From a visual
inspection of the multiscale patterns one can infer a markedly higher T . yatlower scales up to 7 ~ 10 moving
from SU, to UP, panel (a). The values of T_,;;are lower in UP for scale 1. In contrast, for scales 3—7 this
measure is higher in UP phase. We can observe a similar behaviour in the T, ;; where the values of this
measure are significantly higher from 7 =2 to 7 = 9. The I r .y decreases significantly with tilt, mainly in the
first three time scales. Then, significant differences between SU; and UP can be observed in the mid-range time
scales 7= 5,6,7. Observing Rg r_.yand Sg ;7 as two distinct information modification measures we see that
both exhibit significant differences up to time scale 7 with higher values in the upright phase (UP). Note thatin
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Figure 4. Estimated Marginal Means for the differences of Ts_,;; — Tr_ g (black) and Rg g ;r — Ss,r— (red) for the 4 phases of the
experimental protocol.

the first few time scales the redundancy is greater than the synergy, hence the negative values of ITE in these time
scales.

Moving from SU, to MA, we find significantly higher values of Ts_, 5y in the mid-range of time scales. The
Tr_. g exhibits statistically significant differences (a decrease) only for the first scales. Similar behaviour is
observed for the joint TE, with significant higher values in the MA phase for 7 = 1, 4. Regarding Is r .15, Rsr_.p
and Sg gy the model was not able to find significant differences. The profile of Is .z, Rs g .yand Ssz_.pin
recovery supine position (SU,) and in the mental stress phase (MA) are quite similar. For this reason, no
significant difference were detected. Figure 4 presents the estimated marginal means for the differences between
Ts .ip— Tr_pyand Rg .y — Ssr_.yand the respective 95% confidence intervals for the 4 positions of the
experimental protocol. Statistically significant differences (p < 0.05) are marked with .

In the resting supine position (SUy, figure 4(a)) we find prevalence of the redundancy over synergy at 7 = 1.
For the other time scales, no significant differences are observed for these two measures of information
modification. Comparing Ts_,yand Tr g, the Tr . pyovercomes the Ts_,z in the first three time scales. This
behavior is inverted at 7 = 5, 6 where the value of Ts_, 5 is superior. In the remaining time scales no significant
differences were found.

Moving to the upright position (UP, figure 4(b)) a prevalence of the redundancy is again observed in the first
time scales 7 = 1, 2. For the other time scales no significant differences between Rg r_,;yand Ss .y were
detected. Regarding the individuals TEs Ts_.rand T .y we observed a similar behaviour to that observed in the
SUj, that s, the oscillations observed in the heart period are essentially of respiratory origin. For the mid-range
scales T = 5, 6, 7, 8, an inversion is observed, where oscillations of vascular origin prevail over those of
respiratory origin. No significant differences were found for the remaining time scales.

The results of the estimated EMM for the differences in recovery supine position (SU,, figure 4(c)) are
similar to those observed previously. We find only one significant positive difference for Rsg_.;; — Ssr_.pat
7 = 1 denoting a preponderance of redundancy. Regarding T's .y — Tr_. 1, We note prevalence of the T . pyat
7=1,2.Onthe other hand, at 7 = 4, 5, 6 the individual TE T_. 5y plays a more dominant role.

Finally, in the mental stress phase (MA, figure 4(d)) a prevalence of the redundancy is observed at the first
time scale and no significant difference Rg r .z — Ss .y was found in the remaining scales. The Ts .z — Tr g
are significant up to time scale 7 = 9, however in the first two temporal scales 7 = 1, 2 the oscillations observed in
the heart period are predominantly of respiratory origin. In the remaining time scales, i.e., 7 = 3...8, oscillations
of vasomotor origin have a leading role. Figure 5 presents the median and quartiles across subjects of the six
information measures computed as a function of the time scale 7, for the four conditions analyzed when S is
considered the target process. In this case, moving from SU; to UP, a markedly lower value of the TE from heart
period to systolic pressure, Ty s, is observed for scales up to 7 = 3, while the trend is inverted for scales from
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Figure 5. Median and quartiles of the information measures, considering S as the target process, across subjects during: (a) resting
supine (SUj) and postural stress (UP); (b) the recovery supine (SU,) and mental stress (MA).

T =4to 7 = 9 where the TE increased significantly. Both the TE from respiration to systolic pressure and the
joint TE directed to systolic pressure display significantly lower values across a wide range of scales (7 = 1,...,5
for Tr_.s,and 7=2,...,8 for Ty r_.s). In the first two time scales there is a significant increase of the ITE

(figure 5(a4)) going from SU; to UP. This trend is also observed in the Sy s profile (figure 5(a6)). Interestingly,
the ITE Iy g _.sand the redundant transfer Ry z s exhibit a different response to tilt at different time scales:
when 7 = 1 the ITE increased as a consequence of the reduction in the redundancy, while for 7 > 3 the ITE
decreased as a consequence of the increased redundancy (figures 5(a4), (a5)).
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Figure 6. Median and quartiles of the information measures, considering R as the target process, across subjects during: (a) resting
supine (SUj) and postural stress (UP); (b) the recovery supine (SU,) and mental stress (MA).

A very different behaviour of the information measures is reported moving from SU, to MA (figure 5(b)).
The individual and joint information transfer to S displayed no statistically significant variations moving from
relaxation to mental stress (figure 5(b1), (b2) and (b3)). In the first two time scales the Ryy . is higher than the
Su.r_s (figure 5(b5) and (b6)), determining negative values of ITE (figure 5(b4)). The mental stress condition
induces a decrease of redundancy and has no influences on slower time scales (7 > 2). Figure 6 presents the
median and quartiles across subjects of the six information measures computed as a function of the time scale 7,
for the four condition analised when R is considered the target process. The postural stress determined a
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decrease of the information transfer from H to R at small time scales (7 = 1, 2, figure 6(al)), and an increase of
the information transfer from S to R at intermediate time scales (7 = 2, 3, 4, figure 6(a2)). The joint information
transfer from H and S to R decreased moving from SU; to UP for 7 = 1, and increased markedly for 7= 2, 3,4
(figure 6(a3)). The ITE directed to R increased during the postural stress for 7 = 1, 2, 3; this trend is the result of a
significant increase of synergy at small time scales (7 = 1 — 4, figure 6(6)), partly compensated for 7 = 1 by an
increase of redundancy (figure 6(a5)).

Again, the behaviour of the information measures is very different during mental stress compared with
postural stress (figure 6(b)). As observed before when S was the target, also with target R only a few significant
changes were detected moving from SU, to MA, consisting in increased values of Ts_.g, Trs g Re.s.r> and
Sh,s_.r at the faster time scales.

5. Discussion

The present study extends multiscale information decomposition to analyze interactions inside cardiovascular
and respiratory control systems accounting for the presence of short term dynamics and long-range
correlations. The proposed linear parametric framework retains the advantage of previous formulations (Faes
etal2017,2017) and incorporates long-range dynamics, which is fundamental for proper evaluation of
information transfer at coarse time scales. In the following, we discuss the findings of our experimental analysis
first considering the most studied interactions from systolic pressure (S) and respiration (R) towards heart
period (H), then analyzing less physiologically known influences observed with S and R as the target processes,
and finally discussing the impact of long range correlations on the oberved patterns of multiscale interaction.

5.1. Multiscale analysis of cardiovascular and cardiorespiratory interactions

The increase of transfer entropy from S to H at lower time scales (figure 3 al) when going from rest to tilt is in
agreement with previous studies (Westerhof et al 2006, Faes et al 201 1a, Krohova et al 2019) indicating indicating
the dominance of baroreflex-mediated interactions during orthostatic stress. The statistically significant
differences evidenced for mid-range time scales also indicate that S has the most relevant part of its dynamics in
the LF and VLF bands, as already noted in (Krohova et al 2019), and that postural stress induces changes to such
dynamics noticeable in a wider range of time scales. For the UP position, at 7 = 1 the information transfer from
Rto H (figure 3 a2) is significantly lower than in rest. This is in accordance with previous findings evidencing that
the respiratory sinus arrhythmia (RSA) decreases with tilt (Porta et al 2012, Javorka et al 2018, Krohova et al
2019), probably due to the decreased parasympathetically mediated RSA. The trend is different for longer time
scales, at which the information transfer from R to H becomes significantly higher than in rest, indicating the
prevalence of slower oscillations in the information transfer from R to H, i.e. slowly varying respiration
influences (mostly related to spontaneous changes of the respiratory pattern) are transferred more to slower
HRYV oscillations during postural stress (Krohova et al 2019). The two previous effects produce a higher joint
information transfer (figure 3 a3) during UP for time scales from 2 to 9, denoting stronger redundancy, as seen in
figure 3 a4 from the negative I and from figure 3 a5-a6 (higher redundancy than synergy) for time scales up to 7.
Physiologically, such results confirm previous findings indicating that postural stress produces a strong
activation of baroreflex-mediated RSA, path R — S — H, especially for time scales longer than 7 > 1. This
confirms that baroreflex is a fundamental mechanism for slower heart rate oscillations, which should be studied
in the LF band (Krohova et al 2019, Pernice et al 2021).

Regarding the comparison between mental stress and SU,, the transfer entropy T's .z is higher during MA if
compared to rest at mid-range time scales (3 < 7 < 6) (figure 3 b1), reflecting the activation of vasomotion
associated with enhancement of slower blood pressure oscillations. Conversely, there is a significant decrease of
information transfer from R to H at lower time scales (7 = 1, 2) during mental stress (figure 3 b2), indicating an
overall weakening of the influence of respiration on heart rate, which is in agreement with vagal inhibition, but
also the lower involvement of baroreflex-mediated RSA, provoked by stress challenges already demonstrated in
previous works (Faes et al 2011a, Javorka et al 2018, Krohova et al 2019), and it is also in accordance with reduced
cardiorespiratory interactions and synchronization occurring during mental task (Zhang et al 2010, Widjaja et al
2013, Pernice et al 2021). The combination of these results suggests that mental stress not only produces the
weakening of RSA due to vagal inhibition, but also the non-activation of baroreflex-mediated RSA
(R — S — H), differently from postural stress; these observations are supported by previous findings in the
literature (Krohova et al 2019). The results of joint information transfer (figure 3 b3) evidence the progressive
increase occurring during the mental stress from time scale 1 to time scale 4: for 7 = 1 there is a significant
decrease during MA driven by the prevalence of respiratory dynamics, then there is the activation of baroreflex
effects for mid-range time scales that produces the prevalence of information transfer from S dynamics with
regard to slower oscillations (the increase becomes statistically significant in MA just for 7 = 4). Such effect is not
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statistically significant for 7 = 5 and higher scales, differently from postural stress (figure 3 a3), given the lower
influence of respiratory dynamics already starting from 7= 3. This may be due to the the combined effect of (i)
vasomotor reactions elicited by MA through cortical mechanisms reflected in SAP changes and then transferred
to HRV through the baroreflex and (ii) the reduced RSA due to the significant increase in the breathing rate
during MA if compared to SU,; again, such interpretations agree with (Krohova et al 2019). This difference
between the stress conditions and the corresponding resting state across the various time scales emphasizes the
importance of employing a multiscale approach when studying cardiovascular and cardiorespiratory
interactions, suggesting also that such interactions include complex multiscale patterns which respond flexibly
to stress challenges (Widjaja et al 2013, Krohova et al 2019). No statistically significant differences between MA
and SU, are detected, at any time scale, analyzing the interaction transfer entropy (Figure 3 b4), and neither with
regard to redundancy (Figure 3 b5) or synergy (figure 3 b6), conversely to postural stress, evidencing that the
mechanisms underlying postural and mental stress are different, not only when ‘raw’ signals (i.e. at 7= 1) are
considered, but also when going through a full multiscale analysis. This also supports the importance of
employing a multiscale approach to shed more light on such mechanisms, and its potential usefulness to
differentiate between stress conditions.

The analysis of marginal means (figure 4) indicates the prevalence of redundancy only for 7 = 1 during SU},
and also for 7 = 2 during tilt, and this can be put in relation to the activation of baroreflex due to the postural
stress. Moreover, the difference between T _.yand Tg . indicates for 7 < 4 the prevalence of information
transfer from respiration to heart rate, evidencing the dominance of RSA on short time scales. The opposite is
instead observed for mid-range scales (7 from 5 to 9), thus confirming once again that S has the most relevant
part of its dynamics in the LF and VLF bands, and that transfers more information to H than respiration when
assessed only for slower oscillations (Krohova et al 2019). Similar trends are reported comparing the two
different stress typologies (MA and UP), with the only difference being evidenced for 7 = 3, with a prevalence of
redundancy for S at 7 = 2 during postural stress. Conversely, we notice an increase of the information transfer
from S (instead than R) to H during mental stress,ggesting that mental stress strengthens respiration-unrelated
baroreflex effects. Overall, the obtained results highlight that head-up tilt induces scale-dependent variations in
the transfer entropy of arterial pressure, higher in the mid-scales associated with slow oscillations, and lower
associated to the effects of respiration. This result is similar to what observed in (Faes et al 2019) with regard to
complexity of arterial pressure time series.

5.2. Multiscale analysis of interactions directed towards systolic arterial pressure or respiration variability
It is well known that the pathway from H to S is influenced by the Frank-Starling law according to which heart
period variations affect the end diastolic volume and thus the strength of the systolic contraction. The decrease
of TE from H to S during postural stress (figure 5(al)) is in agreement with the decrease of the causal interactions
from H to diastolic arterial pressure (DBP) and from DBP to S reported in (Westerhof et al 2009, Javorka et al
2017). Physiologically, this may be due to the changes in the peripheral vascular resistance associated with
sympathetic activation during baroreceptors unloading, or alternatively to the alower magnitude of heart rate
oscillations associated with orthostasis (Cooke et al 1999). Our results expand such findings evidencing that
these trends are then inverted for longer time scales, for which higher TE from H to S is observed; such increased
transfer is associated with a tilt-induced shift from increasing ITE at short time scales to decreasing I'TE at longer
scales (figures 5(al), (a4)). Thus, our multiscale analysis reveals that the postural stress decreases the redundancy
between H and R while driving S at short scales, and increases such redundancy at longer scales; physiologically,
this may be an indication of complex interactions between the slower rhythms of heart rate variability and the
modulation of respiratory amplitude at these lower frequencies. The physiological interpretations made for
postural stress, considering S as the target process, are not valid for mental stress, similar to what found in
(Javorka et al 2017), where however the strength of the connection along the the direction from DBP to S was
also decreased during mental stress.

When respiration was taken as the target of multiscale analysis of information transfer, we documented that
postural stress induces at short temporal scales lower values of the information transfer from heart period
together with higher values of the information transfer from systolic pressure and of the joint information
(figure 6(al)—(3)). These results are associated with increased synergy between H and S while they transfer
information to R (figure 6(al)—(3)). Previous studies have suggested that the heart rate dynamics are not only
driven by respiration, but also influence it, resulting in bidirectional coupling between H and R that reflecta
closed-loop cardiorespiratory interaction (Saul et al 1989, Yana et al 1993, Perrott and Cohen 1996, Porta et al
2013). Our results approach the study of these interactions from an entirely new point of view, and document
the synergistic role played by heart rate and arterial pressure slow oscillations in influencing the respiratory
dynamics during head-up tilt. The enhancement of synergy suggests that postural stress evokes separate
mechanisms whereby H and S drive R during tilt, the first possibly related to afferent commands to the
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respiratory centers in the central autonomic network and the second to mechanical influences
(Benarroch 1993).

On the other hand, during the mental stress, the low values of Ts_,z and its increase for 7 = 1, 2, suggests that
Sinfluences R only for faster time scales during MA. The lower values of Ts_, g compared to Tz . garein
agreement with a previous study (Porta et al 2013) that underlined that systolic pressure variations at the
respiratory rate are due to the respiratory-related fluctuations of intrathoracic pressure modulating right and left
preloads and, in turn, stroke volume, while the negligible causality in the other direction is due to the fact that
fast neural actions do not influence the relation between Rand S.

5.3. Long-range correlations and multiscale information transfer

Our simulation study revealed that long-range correlations have a substantial impact on the multiscale
information transfer from one process to another, as well as on the synergistic/redundant interactions between
two source processes sending information to the target. In particular, we noticed that increasing the strength of
long-range correlations in a source process reduces the information transferred towards the target and enhances
synergistic effects over redundant ones (figure 2(a)), while the opposite trends (i.e., higher information transfer
and higher redundancy) are observed when long-range correlations become stronger in the target process
(figure 2(b)). These findings can be translated to the results of our experimental analysis, also considering
previous results showing that long-range correlations are almost absent in respiration variability while they are
substantial in heart period and systolic arterial pressure variability and tend to increase with physiological stress
(Martins et al 2020). In fact, the presence of long-range correlations in the target process H, and the
strengthening during postural stress, can explain the increased information transfer and the increased
redundancy observed during tilt in the analysis of cardiovascular and cardiorespiratory multivariate interactions
(figure 5(a)). In the same way, long-range correlations are very important during tilt for the systolic pressure
(Martins et al 2020), and this may explain the increased information transfer and the increased redundant
transfer toward S at intermediate and long time scales observed during postural stress (figure 6(a)). Interestingly,
opposite trends are observed when the respiration signal is taken at the target of the analysis of information
transfer: the postural stress induces lower information transfer from H to R and higher synergistic transfer from
Hand S to R (figure 6(a)); in this case, long-range correlations are in the source process H and this explains the
observed results in agreement with the simulation of figure 2(a).

6. Final remarks

The aim of this study was to introduce an analytical framework, for multivariate Gaussian processes, where both
IID and PID can be exactly evaluated in a multiscale fashion. Due to its parametric formulation, the method
presented in this work inherits the computational efficiency of linear multiscale entropy (Faes et al 2017), and
more importantly, the VARFI modeling allows the description of both the short term dynamics and the long
term correlations. Since long-range correlations are a crucial component of multiscale dynamics, this approach
opens the way for a reliable estimation of the information modification of a variety of natural and man-made
processes in which distinct mechanisms coexist and operate across multiple temporal scales. The application of
this approach to the cardiovascular and cardiorespiratory dynamics highlights the scale-dependent variations of
the information transfer measures of the signals herein considered. In particular, our results evidenced the
impact of slow trends reflecting long-range correlations, present in the time series of heart period and arterial
pressure, on the physiological mechanisms regulating their variability during postural stress, as well as on the
modulation effects that these cardiovascular variables have on the respiratory amplitude. Moreover, our results
indicate that mental stress reinforces respiration-unrelated baroreflex effects.

Future developments of this work encompass the refinement of the SS model structure to support the
description of long-range correlations (Sela and Hurvich 2009) with possible extension to nonstationary and
cointegrated processes (Kitagawa 1987, Johansen and Nielsen 2019, Gil-Alana and Carcel 2020). The
applicability of this method of analysis to non-Gaussian processes, with accurate analytical solutions or
computationally-reliable estimating methodologies, remains a fundamental challenge in the field. This is an
important direction for future research since real-world processes frequently feature non-Gaussian
distributions.

In terms of application contexts, the methodology proposed in this study can be exploited to characterize the
altered cardiovascular and respiratory dynamics in a range of pathological states, e.g. including diabetis (Sorelli et al
2022) and pulmonary fibrosis (Santiago-Fuentes et al 2022). Moreover, the study of multivariate multiscale
dynamics is particularly interesting in econometrics (Zhang et al 2019) and neuroscience (Courtiol et al 2016),
where dynamics spanning many temporal scales are frequently observed and multichannel data gathering is
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widespread. In particular, the methodology proposed in this work can be very useful to study the effects in longer
time scales of the interactions between brain and the heart (Pernice et al 2021, Silvani et al 2016, Almeida et al 2017).
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