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Abstract
Objective. In thiswork, an analytical framework for themultiscale analysis ofmultivariateGaussian
processes is presented,whereby the computationofPartial InformationDecompositionmeasures is
achieved accounting for the simultaneous presence of short-termdynamics and long-range correlations.
Approach.Weconsider physiological time seriesmapping the activity of the cardiac, vascular and
respiratory systems in thefield ofNetworkPhysiology. In this context, themultiscale representationof
transfer entropywithin the network of interactions amongSystolic arterial pressure (S), respiration (R)
andheart period (H), aswell as thedecomposition into unique, redundant and synergistic contributions,
is obtainedusing aVectorAutoRegressive Fractionally Integrated (VARFI) framework forGaussian
processes. This novel approach allows to quantify the directed informationflowaccounting for the
simultaneous presence of short-termdynamics and long-range correlations among the analyzed
processes. Additionally, it provides analytical expressions for the computationof the information
measures, by exploiting the theory of state spacemodels. The approach isfirst illustrated in simulated
VARFI processes and then applied toH, S andR time seriesmeasured in healthy subjectsmonitored at
rest andduringmental andpostural stress.MainResults.Wedemonstrate the ability of theVARFI
modeling approach to account for the coexistence of short-termand long-range correlations in the study
ofmultivariate processes. Physiologically, we show that postural stress induces larger redundant and
synergistic effects fromS andR toHat short time scales,whilemental stress induces larger information
transfer fromS toHat longer time scales, thus evidencing the different nature of the two stressors.
Significance.The proposedmethodology allows to extract useful information about the dependence of
the information transfer on the balancebetween short-termand long-range correlations in coupled
dynamical systems,which cannot be observed using standardmethods that donot consider long-range
correlations.

1. Introduction

Cardiovascular oscillations result from the activity of several coexisting controlmechanisms also interconnected
with respiratory activity and, as a consequence, exhibit a complex dynamical structure (Cohen andTaylor 2002).
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The action of these simultaneously active and intertwinedmechanisms occurs inmultiples time scales and is
reflected in the spontaneous beat-to-beat variability of theHeart Period (H) and Systolic Arterial Pressure (S)
continuously interacting with Respiratory activity (R). Themultivariate and simultaneous analysis of
cardiovascular oscillations can be very helpful to understand the network of interconnections among variables,
shedding light on the combined activity of physiologicalmechanisms like the baroreflex and the Respiratory
Sinus Arrhythmia (RSA) (Berntson et al 1993, Lanfranchi and Somers 2002). Heart rate variability (HRV), i.e. the
changes in the time intervals between consecutive heartbeats, differs in relation to the time scale at which
processes are observed, corresponding to a given frequency of heart rate oscillations. Coupling and causality
between the regulatory processes can be associated to specific time scales of oscillatory activity. Therefore, it is
important to characterize themechanisms and interactions governing heart rate variability on various time
scales (Faes et al 2004, Cerutti et al 2009). Another important feature of the cardiovascular controlmechanisms
and cardiorespiratory interactions is the presence of long range correlations, resulting in slowly varying
dynamics (Xiong et al 2017, Faes et al 2019,Martins et al 2020).

Cardiovascular and cardiorespiratory interactions are often studied using information-theory applied to the
dynamics of theH, S andR time series (Faes et al 2015, 2017). In particular, emerging information-theoretic
approaches such as the so-called ‘Partial InformationDecomposition’ (PID) and the ‘Interaction Information
Decomposition’ (IID) allow assessing the information transfer among themultiple nodes of a network system
(Lizier et al 2018). Such approaches can be contextualizedwithin the general field of ‘Network Physiology’,
which describes the human body as an integrated networkwheremultiple organs continuously interact with
each other reflecting various physiological and pathological states (Bashan et al 2012, Ivanov 2021). The IID and
PID frameworks have been used to decompose, in a network composed ofmultiple processes, the information
flowing from two sources to a target into unique contributions related to each individual source, and to separate
synergistic and redundant contributions.

The present study aims to extendmultiscale partial information decomposition (Faes et al 2017) to the
combined analysis of short-term and long-range correlations among coupled processes, and to employ the
extended approach to quantify the amount of information transferred among theH, S, andRprocesses, as well
as to identify the type of interaction (synergistic or redundant) between two processes while they transfer
information to the third. To this end, we propose amethod using vector autoregressive fractionally integrated
(VARFI)models which provides themultiscale representation of theVARFI parameters using the theory of state
spacemodels, thereby allowing to extract from such parametersmultiscale andmultivariate information
transfermeasures (Faes et al 2019,Martins et al 2020, Pinto et al 2021). The advantages of thismethod resides in
its parametric formulation that permits towork reliably on short time series and in the operation of fractional
integration that allows to take into account not only short-termdynamics, but also the long-range correlations.
Furthermore, decomposing the information allows assessing the directionality of the interactions, which has not
been done in previous works (Faes et al 2019,Martins et al 2020)where informationmeasures like the
complexity and the information storagewere used.

This approach isfirst tested in simulations of a benchmarkVARFImodel and then applied to experimental
data consisting ofH, S andR time seriesmeasured in healthy subjectsmonitored in a relaxed physiological
condition (supine position) and during two types of stress: postural stress provoked by head-up tilt andmental
stress induced bymental arithmetic test.

2.Methods

Letus consider adynamical system whose activity is definedbyadiscrete-time, stationary vector stochasticprocess
composedofM real-valuedzero-mean scalar processesXj,nwith j= 1KM, = -¥ < < ¥[ ]X X nX ,n n M n

T
1, , .

Thepast of the scalar processes is denoted as =-
- -[ ]X X X,j n j n j n, , 1 , 2 .With this notation, in the followingwe

presentourmethodology to assess informationdecomposition inmultipleprocesses accounting for short-term
dynamics and long-range correlations.

2.1. Information Transfer andModification
In an information-theoretic framework, the directed transfer of information between scalar sub-processes is
assessed by the Transfer Entropy (TE). Specifically, the TE quantifies the amount of information that the past of
the source provides about the present of the target process over and above the information already provided by
the past of the target itself (Schreiber 2000). Transfer entropy between the source process component i and the
target component j is defined as

=
- -( ∣ ) ( )T I X X X; , 1i j j n i n j n, , ,
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where I( · ; · | · )denotes conditionalMutual Information (MI) (Cover andThomas 2005). Considering two
sourcesXi andXk and a targetXj, the information transferred towardsXj from the sourcesXi andXk taken
together is quantified by the joint TE (JTE)

=
- - -( ∣ ) ( )T I X X X X; , . 2ik j j n i n k n j n, , , ,

Generally, the joint TE differs from the sumof the two individual TEs, since the source processes (i, k)
typically interact with each other while they transfer information to the target process, j. The joint TE (2) can be
decomposed under an Interaction InformationDecomposition (IID) framework as (Faes et al 2017)

= + +    ( )T T T I , 3ik j i j k j ik j

where Iik→j is denoted as Interaction Transfer Entropy (ITE) since it is equivalent to the interaction information
(McGill 1954) computed between the present of the target and the past of the two sources, conditioned on the
past of the target

=
- - -( ∣ ) ( )I I X X X X; ; . 4ik j j n i n k n j n, , , ,

The ITE quantifies themodification of the information transferred from the source processesXi andXk to
the targetXj. The ITE can take positive and negative values. Positive values of Iik→j denote synergy, where the
joint TE is greater than the sumof the two individual TEs > +  ( )T T Tik j i j k j . In contrast, negative values of
Iik→j refer to redundancy, which occurs when the information transferred from the sources to the target
overlapped,meaning that the sumof individual TEs is larger than the joint TE + >  ( )T T Ti j k j ik j .

Themain drawback of IID is that the interaction TE is quantified using only onemeasure, and thusmakes
redundancy and synergymutually exclusive. This disadvantage can be overcome by the Partial Information
Decomposition (PID) (Williams andBeer 2010) encompassing four distinct positive quantities (Faes et al 2017)

= + + +     ( )T U U R S a, 5ik j i j k j ik j ik j

= +   ( )T U R b, 5i j i j ik j

= +   ( )T U R c. 5k j k j ik j

The termsUi→j andUk→j quantify the parts of the information transferred to the target processXj, which are
unique to the source processesXi andXk, respectively, thus reflecting contributions to the predictability of the
target that can be obtained fromone of the sources alone. Then, the termsRik→j and Sik→j quantify the redundant
and synergistic interaction between the two sources and the target, respectively.

When compared to IID (3), the PID (5) has the advantage that it provides distinct non-negativemeasures of
redundancy and synergy, therefore allowing the simultaneous presence of redundancy and synergy as distinct
elements of informationmodification.Moreover, the IID and PID are related to each other as

= -   ( )I S R , 6ik j ik j ik j

thus showing that the interaction TE is actually ameasure of the ‘net’ synergymanifested in the transfer of
information from the two sources to the target (Krohova et al 2019).

Themain issuewith the PID (5) is that its constituentmeasures cannot be obtained from the classic
information theory simply subtracting conditionalMI terms, as done for the IID. Therefore, to complete the
PID an additional ingredient to the theory is needed to get a fourth defining equation to be added to (5) for
providing an unambiguous definition ofUi→j,Uk→j,Rik→i and Sik→j. Several PID definitions have been
proposed arising fromdifferent conceptual definitions of redundancy and synergy (Harder et al 2013,
Bertschinger et al 2014, Griffith et al 2014). Herewemake reference to the so-calledMinimumMutual
Information PID (MMI-PID) (Barrett 2015). In this approach, redundancy is defined as theminimumof the
information provided by each individual source to the target. This leads to the following definition of the
redundant TE

=  { } ( )R T Tmin , . 7ik j i j k j

This definition satisfies the desirable property that the redundant TE is independent of the correlation
between the source processes. Furthermore, if the observed processes have a joint Gaussian distribution, all
previously-proposed PID formulations reduce to theMMIPID (Barrett 2015).

2.2. Vector autoregressive fractionally integratedmodel
The classic parametric approach to describe linearGaussian stochastic processes exhibiting both short-term
dynamics and long-range correlations is based on representing anM-dimensional discrete-time, zero-mean and
unitary variance stochastic processXn as a Vector Autoregressive Fractionally Integrated (VARFI) process fed by
uncorrelatedGaussian innovations En. TheVARFI(p,d) process is expressed as (Tsay 2010)
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 =( ) ( ) ( )LA X Ediag , 8n n
d

where L is the back-shift operator = -( )L X Xi
n n i , = - å =( )L LA I AM i

p
i

i
1 (IM is the identitymatrix of sizeM)

is a vector autoregressive (VAR) polynomial of order p defined by theM×M coefficientmatricesA1,K,Ap, and

 =

- ¼
- ¼

¼ -

( )

( )
( )

( )
  

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

L

L

L

diag

1 0 0

0 1 0

0 0 1

,

d

d

d

d

M

1

2

and - = ¼( )L i M1 , 1, ,di , is the fractional differencing operator defined by:

å- = =
G -

G - G +=

¥

( ) ( )
( ) ( )

( )( ) ( )L G L G
k d

d k
1 ,

1
, 9d

k
k
i k

k
i i

i0

i

withΓ( · ) denoting theGamma (generalized factorial) function. TheVARFImodel is stationarywhen all the
roots of [ ( )]A Ldet are outside the unit circle and− 0.5< di< 0.5 for i= 1KM, while it is nonstationary but
mean reverting for 0.5� di< 1 (Baillie 1996, Velasco 1999). The coefficients of the polynomialA(L) allow the
description of the short termdynamics, while the parameter = ¼( )d dd , , M1 in equation (8) determines the
long-termbehavior of each individual process.

The parameters of theVARFI(p, d)model (8), namely the coefficients ofA(L) and the variance of the
innovationsS = [ ] E En

T
nE , are generally obtained fromprocess realizations offinite length first estimating the

differencing parameters diusing theWhittle semi-parametric local estimator (Beran et al 2016) individually for
each processXi; then defining thefiltered data = -( )( )X L X1 ;i n

f d
i n, ,

i andfinally estimating theVARparameters

from the filtered data ( )Xn
f using the ordinary least squaresmethod to solve theVARmodel =( ) ( )LA X En

f
n, with

model order p assessed through the Bayesian information criterion (Faes et al 2012).
Here, we approximate theVARFI process (8)with afinite order VARprocess by truncating the fractional

integration at afinite lag q, as follows

å å

å å

 » = ¼

= ¼ =

= =

= =

( ) ( )

[ ] ( )

( ) ( )

( ) ( )

⎡
⎣⎢

⎤
⎦⎥

L G L G L

G G L L

G

G

diag diag

diag , , . 10

k

q

k
k

k

q

k
M k

k

q

k k
M k

k

q

k
k

d

0

1

0

0

1

0

This allows us to express theVARFI(p,d) process as aVAR(m) process, withm= p+ q

=( ) ( )LB X E , 11n n

with the coefficients inB(L) given by

å å å= = - = -
= = =

+

( ) ( ) ( ) ( )⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

L L L L L LB A G I A G I B , 12M
i

p

i
i

k

q

k
k

M
k

p q

k
k

1 0 0

yielding, for q� p,

å

å

å

=

=

- + = ¼

- + = + ¼

= + ¼ +

=
-

=
-

=

+ -

+ - -
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⎧

⎨
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⎪
⎪

⎩
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B
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. 13

M

k
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i

k

i k i
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i
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i

p q k

i k q q i

0

1

1

0

2.3.Multiscale representation ofVARFI processes
In this section, we describe how to compute the informationmeasures defined in section 2.1 acrossmultiple
temporal scales, under the hypothesis that the analyzedmultivariate process is appropriatelymodeled by the
VARFI representation provided in section 2.2. The procedure formultiscale analysis extends the rescaling
approach proposed in (Faes et al 2017). Here only the fundamental steps are presented, themathematical details
are provided in (Faes et al 2017) and in the Appendixes of (Martins et al 2020).

Typically, to represent a scalar stochastic process at the temporal scale defined by the scale factor τ, a two-
step procedure is employedwhich consists infirstfiltering the process with a low passfilter with cutoff frequency
fτ= 1/(2τ), and then downsampling the filtered process using a decimation factor τ (taking one every τ samples)
(Porta et al 2006, Faes et al 2017). Extending this approach to themultivariate case, wefirst implement the
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following linearfinite impulse response (FIR)filter

= ( ) ( )( ) LX D X , 14n
r

n

where r denotes thefilter order = å =( )L D LD Ik
r

M k
k

0 , and the coefficients of the polynomialDk, k= 1,K,r,
are the same for all scalar processesXjäX and are chosen to set up a low pass FIR configurationwith cutoff
frequency 1/(2τ).This step transforms theVAR(p+ q) process (11) into aVARMA(p+ q, r) process with
moving average (MA) part determined by the FIR filter coefficients

= =( ) ( ) ( ) ( ) ( )( )L L L LB X D B X D E . 15n
r

n n

Then, we exploit the connection betweenVARMAprocesses and state space (SS) processes (Aoki and
Havenner 1991) to evidence that theVARMAprocess (10) can be expressed in SS form as

= ++ ( )( ) ( ) ( ) ( ) ( ) aZ B Z K E , 16n
r r

n
r r

n
r

1

= + ( )( ) ( ) ( ) ( ) bX C Z E , 16n
r r

n
r

n
r

where = - - - -[ ]( ) ( ) ( ) Z X X E En
r

n
r

n m
r

n n r
T

1 1 is a (m+ r) - dimensional state process, =( )E D En
r

n0 is the SS
innovation process, and the vectorsK(r) andC(r) and thematrixB(r) can be obtained fromB(L) andD(L). Further
details can be found in appendix B of (Martins et al 2020).

In the second step of the rescaling procedure, the filtered process is downsampled in order to complete the
multiscale representation. This is achieved by applying the results in, (Barnett and Seth 2015, Solo 2016, Faes et al
2017)which allow describing thefiltered SS process after downsampling in the form

= +t t t t t
+ ( )( ) ( ) ( ) ( ) ( ) aZ B Z K E , 17n n n1

= +t t t t ( )( ) ( ) ( ) ( ) bX C Z E . 17n n n

equations (17) provide the SS formof the filtered and downsampled version of the original VARFI(p,d) process,
and parameters St t t t( )( ) ( ) ( ) ( )B C K, , , E can be obtained from the SS parameters before downsampling and from
the downsampling factor τ.

2.4.Multiscale information transfer andmodification
In this section, we showhow to compute analytically the information decomposition of a jointly Gaussian
multivariate stochastic process starting from its associated SSmodel (17).

The derivations are based on the knowledge that the linear parametric representation ofGaussian processes
captures all the entropy differences that define the various informationmeasures (Barrett et al 2010). These
entropy differences are related to the partial variances of the present of the target conditioned to its past and the
past of one ormore sources. The partial variances can be formulated as variances of the prediction errors
resulting from linear regression (Faes et al 2015, 2017). Specifically, let us denote as = - -[ ∣ ]∣ E X X Xj j n j n j n j n, , , ,

and = - - -[ ∣ ]∣ E X X X X,j ij n j n j n i n j n, , , , , the prediction errors of a linear regression ofXj,n on
-Xj n, and - -( )X X, ,j n i n, ,

respectively. Then, the TE fromXi toXj can be expressed as

S
S

= ( )∣

∣

T
1

2
ln . 18i j

E

E

j j

j ij

Similarly, the joint TE from ( )X X,i k toXj can be defined as

S
S

= ( )∣T
1

2
ln , 19ik j

E

E

j j

j

whereS = [ ] EE j n,
2

j
is the variance of the prediction error of a linear regression ofXj,n on = -- E XX ,n j n j n, ,

-[ ∣ ] X Xj n n, . Based on these derivations, one can easily complete the IIDdecomposition of TE by computingTk→j

as in (18) and deriving the interaction TE from (3) and the PIDdecomposition, as well by deriving the redundant
TE from (7), the synergistic TE from (6) and the unique TEs from (5).

Finally, we showhow to compute any partial variance from the parameters of an SSmodel in the form (17) at
any assigned time scale τ (Barnett and Seth 2015, Solo 2016). The partial varianceS t

∣
( )

Ej a
, where the subscript a

denotes any combination of indexes ä {1,K,M}, can be derived from the SS representation of the innovations
of a submodel obtained removing the variables not indexed by a from the observation equation. Specifically, we
need to consider the submodel with state equation (17a) and observation equation

= +t t t t ( )( ) ( ) ( ) ( )X C Z E , 20a n a n a n, ,

where the additional subscript a denotes the selection of the rowswith indices a in a vector or amatrix. These
submodels can be converted to the SS form as in (17), with innovation covarianceS t( )

Ea
, so that the partial

varianceS t
∣
( )

Ej a
is derived as the diagonal element ofS t( )

Ea
corresponding to the position of the targetXj,n (Faes et al

2017,Martins et al 2020).
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3. Simulation study

In this section, we investigate the behavior of the informationmeasures in the presence of long term correlations
and considering oscillations and interactions commonly observed in cardiovascular and cardiorespiratory
variability.We start with aVARprocess with short termdynamics described by the benchmarkmodel (Faes et al
2017):

r p r

r p r

r p r

= - +

= - + + +

= - + + +

- -

- - - -

- - - -

· · ·
· · · · ·
· · · · · ( )

R f R R E

S f S S a H a R E

H f H H a S a R E

2 cos 2

2 cos 2

2 cos 2 21

n r r n r n r n

n s s n s n s h n s r n s n

n h h n h n h s n h r n h n

1
2

2 ,

1
2

2 , 2 , 1 ,

1
2

2 , 1 , 1 ,

where = [ ]E E EE , ,n r n s n h n, , , is a vector of zeromeanwhite Gaussian noises of unit variance and uncorrelated
with each other (ΣE= I).We set the parameters to reproduce oscillations and interactions commonly observed
in cardiovascular variability in context of cardiorespiratory interactions, figure 1 (Malliani et al 1991), i.e, the
self-sustained dynamics typical of Respiration r = =( )fR, 0.9, 0.25r r and the slower oscillatory activity
commonly observed in the so-called low frequency band in the variability of Systolic Arterial Pressure

r = =( )fS, 0.8, 0.1s s andHeart Period r = =( )fH, 0.8, 0.1h h . The remaining parameters identify causal
interactions between processes, which are set fromR to S and fromR toH (bothmodulated by the parameter
as,r= ah,r= 1 ) to simulate thewell-known respiration-related fluctuations of arterial pressure and heart rate,
and along the two directions of the closed loop between S andH(as,h= 0.1, ah,s= 0.4) to simulate bidirectional
cardiovascular interactions. All these parameters, summarized in table 1, were chosen tomimic the oscillatory
spectral properties commonly encountered in short-term cardiovascular variability considering the cardior-
espiratory interactions.

Next, we provide an approximated simulation of aVARFI process by using the truncationmethod (10)
introduced in section 2.3, whereby the vector = ( )d d dd , ,r s h is provided to assess fractional integration of the
three original processes.With this approach, two simulations are carried out: in Simulation 1 the long range
parameters of bothR andH processes are kept fixed, while the parameter ds is increased from0 to 0.7 (20 points
equally spaced on this interval). Then, in Simulation 2 the long range correlations d components of theR and S
arefixed and the component ofH process is increased from0 to 0.7. In both simulation experiments, we
consider theH process as target and the remaining processesR and S as sources. Therefore, in thefirst
experiment we vary the longmemory parameter of only one source (in this case S) and in the secondwe fixed the
d parameters of the sources and increased the longmemory of the target process. Figure 2 reports the results of

Figure 1.Graphical representation of the trivariate VARprocess of equation (21)with parameters set according to reproduce realistic
cardiovascular cardiorespiratory dynamics together with cardiorespiratory interactions.

Table 1.Parameters of VARmodel (21) that determine
the short termdynamics of theVARFI process.

Coupling au,v Poles

Process R S H ρ f

R − − − 0.9 0.25

S 1 − 0.1 0.8 0.1

H 1 0.4 − 0.8 0.1
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the individual TEs (1), the joint TE (2), the interaction TE (4), the redundant TE (7) and the synergistic TE (6)
computed for the overall VARFI process.

Infigure 2(a), when ds increases, we observe a decrease of the individual TE from S toH and of the joint TE
fromR, S toH (panels a2 and a3). On the other hand, the ITE increases, suggesting an augmented synergy

Figure 2.Theoretical profiles ofTR→H,TS→H,TR,S→H, IR,S→H,RR,S→H and SR,S→H for a VARFI process. (a) Simulation 1: the long
memory parameters dr = 0.1 and dh = 0.45 (source and target) are kept fixed, while ds is varied from0 (blue) to 0.7 (red). Note that for
TR→H all the profiles coincide, as the long range correlation parameters ofR andH are the same for all combinations of the simulated d
vectors. (b) Simulation 2: the longmemory parameters of the source processes arefixed at the values dr = 0.1, ds = 0.25, while the long
memory parameter for the target is increased from dh = 0 (blue) to dh = 0.7 (red).
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compared to redundancy. This behavior is better observedwhenwe look at redundancy and synergy separately:
comparing the values of these twomeasures it is visible that as ds increases synergy is prevalent in relation to
redundancy as the latter takes lower values, particularly in the first 10 time scales (panels a4, a5 and a6).

Whenwe vary the long range parameter of the target process, in this caseH, we observe opposite trends, as
seen infigure 2(b): the individual and joint information transfer at longer time scales increase with dh (panels b1,
b2 and b3), and the ITE decreases denoting an increased redundancy. As before, this behavior is clearer whenwe
analyze redundancy and synergy as two distinct elements of information: as dh increases, redundancy assumes
higher values when compared to synergy, particularly on longer time scales, panels b4, b5 and b6.

In summary, our simulations show that the presence of long-range correlations in the source process
decreases the information transfer and increases the prevalence of synergy over redundancy, while the opposite
behavior (i.e. higher transfer of information and higher redundancy) occurs when long-range correlations are
manifested in the target process. These tendencies can explain the role played by long-memory on the transfer of
information in complex networks.

4. Cardiovascular signals analysis

In this sectionwe apply the proposed approach on experimental data, computing the informationmeasures on
cardiovascular and respiratory time series: the heart period (H), systolic arterial pressure (S), and respiration (R).
The interaction between the dynamics of these series has been the subject of intense study (Faes et al
2004, 2011a, 2011b, Porta et al 2012, Krohova et al 2019), whichmotivates their use in amultivariate context.
Recent studies have pointed out the intertwined nature of themeasures of information dynamics, and the
requirement to combine their evaluation to circumventmisinterpretations about the intrinsic network
properties (Chicharro and Ledberg 2012, Faes et al 2015, Porta et al 2016). In addition, the specificity ofmeasures
of information storage and transfer is frequently limited by the fact that their definition incorporatesmultiple
aspects of the dynamical structure of network processes; the flexibility of informationmeasures allows to
overcome this limitation by decomposing themeasures intomeaningful quantities (Porta et al 2015). Themost
studied variable in cardiovascular spontaneous variability isHRV (Malik 1996, Shaffer andGinsberg 2017,
Pernice et al 2019). This variable reflects cardiovascular complexity, strongly interacts with S andR and
represents the capability of the organism to react to environmental and psychological stimuli. For this reason, in
the analysis of experimental time series we focusmainly on takingH as the target process for the analysis of
information decomposition, as done in several previous studies (Faes et al 2004, 2011a, 2011b, Porta et al 2012,
Krohova et al 2019). Nevertheless, in afirst attempt to investigate with our tools also different physiological
mechanisms, we consider also S andR as target processes in some additional analyses. The assumptions of
stationarity and jointGaussianity that underlie themethodologies presented in this paper are largely exploited in
thismultivariate analysis, and are usually assumed to holdwhen realizations of the cardiac, vascular and
respiratory processes are obtained inwell-controlled experimental protocols designed to achieve stable
physiological and experimental conditions (Baselli et al 1994, Triedman et al 1995, Patton et al 1996, Cohen and
Taylor 2002, Xiao et al 2005, Faes et al 2012).

4.1. Experimental protocol
The cardiovascular and respiratory time series weremeasured in a group of 61 healthy subjects (19.53.3 years
old, 24males)monitored in the resting supine position (SU1), in the upright position (UP) reached through
passive head-up tilt, in the recovery supine position (SU2) and duringmental stress induced bymental
arithmetic test (MA). The head-up tilt protocol consisted in tilting themotor-driven bed table where the subject
was lying to 45 degrees in order to evokemild orthostatic stress. During theMA task the subjects were instructed
to sumup three-digit numbers displayed on the ceiling of the examination roomby a data projector, and to
decidewhether the final one-digit numberwas odd or even pushing the button projected on the ceiling. During
thewhole protocol, the volunteers were asked to avoid disturbingmovements and speaking (Javorka et al 2017).
During allmeasurements, the subjects were free-breathing. The studywas approved by Ethical Committee of the
Jessenius Faculty ofMedicine, ComeniusUniversity (Slovakia) and all participants signed awritten informed
consent.More details about the experimental protocol are reported in (Javorka et al 2017).

The acquired signals were the surface electrocardiogram (ECG, horizontal bipolar thoracic lead; CardioFax
ECG-9620,NihonKohden, Japan), thefinger arterial blood pressure (Finometer Pro, FMS,Netherlands)
recorded noninvasively by the volume-clamp photoplethysmographicmethod, and the respiration signal
recorded through respiratory inductive plethysmography (RespiTrace, NIMS,USA). Allmeasured signals were
digitised at 1000 Hz. For each subject and experimental condition, the values ofH, S andRweremeasured on a
beat-to-beat basis respectively as the sequences of the temporal distances between consecutive R peaks of the
ECG, themaximumvalues of the arterial pressure waveform takenwithin the consecutively detected heart
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periods, and the values of the respiratory signal sampled at the onset of the consecutively detected heart periods.
The three time seriesH, S andRwere interpreted as realizations of the stochastic processes descriptive of the
cardiac, vascular, and respiratory dynamics. For each subject and condition, the analyzedmultivariate process is
defined as = [ ]X X XX , ,H S R .

The analysis was performed on segments of at least 400 consecutive points, free of artifacts and deemed as
weak-sense stationary through visual inspection, extracted from the time series for each subject and condition.
Missing values and outliers were corrected through linear interpolation and, forH andwhen possible,
erroneous/missing intervals were substituted by pulse intervalsmeasured as the difference in time between two
consecutive Smeasurements D = + -( ( ) ( ) ( ))n t n t n1t S SS

. The three time series were normalized to zero
mean and unit variance beforemultiscale analysis.

4.2.Data analysis
To compute the IID and PIDmeasures, the approach based on complete VARFImodel identification defined in
section 2.3was applied. TheVARFImodel was identifiedfirst estimating the fractional differencing parameter
di, i= 1,K,3, individually for each time series using theWhittle estimator, thenfiltering the time series with the
fractional integration polynomial truncated at a lag q, andfinally estimating the parameters of the polynomial
relevant to the short-termdynamics via least squares VAR identification. Theoretically, theVARFI is of infinite
order, hence the value of q has to be selected to approximate theVARFI process with afinite order VARprocess.
Several previous studies (Bardet et al 2003, Faes et al 2019) defined q= 50 as an appropriate value for truncating
theVARFI process. By increasing q, we can obtain amore precise approximation of the fractional integration
part butwith a higher computational cost, while a reduced value (and thus an excessive truncation) causes an
underestimation of the TEmeasures and the smoothing of the non-monotonic trends with the time scale (Faes
et al 2019). The order p of theVARmodel was assessed individually for each subject and in each phase of the
experimental protocol, by the Bayesian information criterion (BIC) (Martins et al 2020). Then,multiscale TE
measures were computed implementing FIR lowpassfilter of order r= 48, for time scales τ in the range (1,
K,12), which corresponds to low pass cutoff normalized frequencies fτ= (0.5,K,0.04). The value r= 48was set
according to previous settings (Faes et al 2019).

The differencing parameters diwere estimated individually for each time series in the interval [−0.5, 1]. For 3
individuals the estimated di parameters were near to 1which indicate that the estimatedVARFImodels were
nonstationary and thus only 59 subjects were considered for further statistical analysis.

4.3. Statistical analysis
Significant changes in the information transfer andmodificationmeasures across the pairs of experimental
conditions SU1 versusUP and SU2 versusMA are evaluated via a linearmixed-effectsmodel, incorporating both
fixed and randomeffects (Pinheiro andBates 2006). Thefixed-effects (or factors)were condition and scale, while
the random-effect was the subject-dependent intercept that allows for the randomvariation between subjects.
Furthermore, the interaction between the factors is also considered. To assess the changes of interest, estimated
marginalmeans (EMM) (Searle et al 1980) are obtained for each difference, UP− SU1 andMA− SU2, at each
time scale, τ= 1,K,12. A Z-test is applied to check the significance of these differences at a level p< 0.05with
the Tukey correction formultiple comparisons.

Additionally, we used a similar approach to evaluate significant differences betweenmeasures, particularly,
between the individuals TEs from S toH and fromR toH, and between the redundant and synergistic TEs, at
each time scale τ. This allows to ascertainwhich of the source processes, S orR, is prevalent in drivingH at a
given time scale, or whether redundant effects are prevalent over synergistic ones. The comparison between
redundancy and synergy is also very important as it provides clues about the type of interactions between source
processes,making it possible to corroborate some physiological assumptions. In this case, the fixed-effects (or
factors) aremeasure and scale, and the random-effect is the subject-dependent intercept as in the previous case.
For bothmodels, residuals were checked forwhiteness. The packageslme4 (Bates et al 2015) andemmeans
(Lenth 2019) of theR software (RCore Team2016)were used to build themodels and to compute EMM,
respectively.

4.4. Results
The identification of theVARmodel returned rather stable values of themodel order: themedian valuewas
p= 4 for each phase of the protocol, while the interquartile interval was [4, 5] for SU1, [3, 5] forUP, [3, 4] for
SU2, and [3, 4] forMA. The results ofmultiscale analysis performed for the IID terms as defined in
equations (1)–(4) aswell for the redundant and synergistic TEs of the PID equations (5) (Rik j and Sik→j ) are
provided next.
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First, we analyze themultiscale interactions when the heart period time series was considered as the target,
and the systolic pressure and respirationwere considered as the sources. Figure 3 presents themedian and
quartiles across subjects of the six informationmeasures computed as a function of the time scale τ= 1,K,30,
for SU1 versusUP, panel (a) and SU2 versusMA, panel (b). Statistically significant changes (p< 0.05) in TE
measures at each time scale across the pairs SU1 versusUPor SU2 versusMAaremarkedwith ∗. From a visual
inspection of themultiscale patterns one can infer amarkedly higherTS→H at lower scales up to τ≈ 10moving
fromSU1 toUP, panel (a). The values ofTR→H are lower inUP for scale 1. In contrast, for scales 3—7 this
measure is higher inUP phase.We can observe a similar behaviour in theTS,R→Hwhere the values of this
measure are significantly higher from τ= 2 to τ= 9. The IS,R→H decreases significantly with tilt,mainly in the
first three time scales. Then, significant differences between SU1 andUP can be observed in themid-range time
scales τ= 5, 6, 7.ObservingRS,R→H and SS,R→H as two distinct informationmodificationmeasures we see that
both exhibit significant differences up to time scale 7with higher values in the upright phase (UP). Note that in

Figure 3.Median and quartiles of the informationmeasures, consideringH as the target process, across subjects during: (a) resting
supine ( )SU1 and postural stress ( )UP ; (b) the recovery supine ( )SU2 andmental stress ( )MA .
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thefirst few time scales the redundancy is greater than the synergy, hence the negative values of ITE in these time
scales.

Moving fromSU2 toMA,wefind significantly higher values ofTS→H in themid-range of time scales. The
TR→H exhibits statistically significant differences (a decrease) only for thefirst scales. Similar behaviour is
observed for the joint TE, with significant higher values in theMAphase for τ= 1, 4. Regarding IS,R→H,RS,R→H

and SS,R→H themodel was not able tofind significant differences. The profile of IS,R→H,RS,R→H and SS,R→H in
recovery supine position (SU2) and in themental stress phase (MA) are quite similar. For this reason, no
significant difference were detected. Figure 4 presents the estimatedmarginalmeans for the differences between
TS→H− TR→H andRS,R→H− SS,R→H and the respective 95% confidence intervals for the 4 positions of the
experimental protocol. Statistically significant differences (p< 0.05) aremarkedwith ∗.

In the resting supine position (SU1, figure 4(a))wefind prevalence of the redundancy over synergy at τ= 1.
For the other time scales, no significant differences are observed for these twomeasures of information
modification. ComparingTS→H andTR→H, theTR→H overcomes theTS→H in thefirst three time scales. This
behavior is inverted at τ= 5, 6where the value ofTS→H is superior. In the remaining time scales no significant
differences were found.

Moving to the upright position (UP,figure 4(b)) a prevalence of the redundancy is again observed in the first
time scales τ= 1, 2. For the other time scales no significant differences betweenRS,R→H and SS,R→Hwere
detected. Regarding the individuals TEsTS→H andTR→Hwe observed a similar behaviour to that observed in the
SU1, that is, the oscillations observed in the heart period are essentially of respiratory origin. For themid-range
scales τ= 5, 6, 7, 8, an inversion is observed, where oscillations of vascular origin prevail over those of
respiratory origin. No significant differences were found for the remaining time scales.

The results of the estimated EMM for the differences in recovery supine position (SU2,figure 4(c)) are
similar to those observed previously.Wefind only one significant positive difference forRS,R→H− SS,R→H at
τ= 1 denoting a preponderance of redundancy. RegardingTS→H− TR→H, we note prevalence of theTR→H at
τ= 1, 2. On the other hand, at τ= 4, 5, 6 the individual TETS→H plays amore dominant role.

Finally, in themental stress phase (MA, figure 4(d)) a prevalence of the redundancy is observed at the first
time scale and no significant differenceRS,R→H− SS,R→Hwas found in the remaining scales. TheTS→H− TR→H

are significant up to time scale τ= 9, however in thefirst two temporal scales τ= 1, 2 the oscillations observed in
the heart period are predominantly of respiratory origin. In the remaining time scales, i.e., τ= 3K8, oscillations
of vasomotor origin have a leading role. Figure 5 presents themedian and quartiles across subjects of the six
informationmeasures computed as a function of the time scale τ, for the four conditions analyzedwhen S is
considered the target process. In this case,moving fromSU1 toUP, amarkedly lower value of the TE fromheart
period to systolic pressure,TH→S, is observed for scales up to τ= 3, while the trend is inverted for scales from

Figure 4.EstimatedMarginalMeans for the differences ofTS→H − TR→H (black) andRS,R→H − SS,R→H (red) for the 4 phases of the
experimental protocol.
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τ= 4 to τ= 9where the TE increased significantly. Both the TE from respiration to systolic pressure and the
joint TE directed to systolic pressure display significantly lower values across awide range of scales (τ= 1,K,5
forTR→S, and τ= 2,K,8 forTH,R→S). In thefirst two time scales there is a significant increase of the ITE
(figure 5(a4)) going fromSU1 toUP. This trend is also observed in the SH,R→S profile (figure 5(a6)). Interestingly,
the ITE IH,R→S and the redundant transferRH,R→S exhibit a different response to tilt at different time scales:
when τ= 1 the ITE increased as a consequence of the reduction in the redundancy, while for τ� 3 the ITE
decreased as a consequence of the increased redundancy (figures 5(a4), (a5)).

Figure 5.Median and quartiles of the informationmeasures, considering S as the target process, across subjects during: (a) resting
supine ( )SU1 and postural stress ( )UP ; (b) the recovery supine ( )SU2 andmental stress ( )MA .
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Avery different behaviour of the informationmeasures is reportedmoving fromSU2 toMA (figure 5(b)).
The individual and joint information transfer to S displayed no statistically significant variationsmoving from
relaxation tomental stress (figure 5(b1), (b2) and (b3)). In thefirst two time scales theRH,R→S is higher than the
SH,R→S (figure 5(b5) and (b6)), determining negative values of ITE (figure 5(b4)). Themental stress condition
induces a decrease of redundancy and has no influences on slower time scales (τ> 2). Figure 6 presents the
median and quartiles across subjects of the six informationmeasures computed as a function of the time scale τ,
for the four condition analisedwhenR is considered the target process. The postural stress determined a

Figure 6.Median and quartiles of the informationmeasures, considering R as the target process, across subjects during: (a) resting
supine ( )SU1 and postural stress ( )UP ; (b) the recovery supine ( )SU2 andmental stress ( )MA .
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decrease of the information transfer fromH toR at small time scales (τ= 1, 2,figure 6(a1)), and an increase of
the information transfer fromS toR at intermediate time scales (τ= 2, 3, 4,figure 6(a2)). The joint information
transfer fromHand S to R decreasedmoving fromSU1 toUP for τ= 1, and increasedmarkedly for τ= 2, 3, 4
(figure 6(a3)). The ITE directed to R increased during the postural stress for τ= 1, 2, 3; this trend is the result of a
significant increase of synergy at small time scales (τ= 1− 4, figure 6(a6)), partly compensated for τ= 1 by an
increase of redundancy (figure 6(a5)).

Again, the behaviour of the informationmeasures is very different duringmental stress comparedwith
postural stress (figure 6(b)). As observed beforewhen Swas the target, alsowith target R only a few significant
changes were detectedmoving fromSU2 toMA, consisting in increased values ofTS→R,TH,S→R,RH,S→R, and
SH,S→R at the faster time scales.

5.Discussion

The present study extendsmultiscale information decomposition to analyze interactions inside cardiovascular
and respiratory control systems accounting for the presence of short termdynamics and long-range
correlations. The proposed linear parametric framework retains the advantage of previous formulations (Faes
et al 2017, 2017) and incorporates long-range dynamics, which is fundamental for proper evaluation of
information transfer at coarse time scales. In the following, we discuss the findings of our experimental analysis
first considering themost studied interactions from systolic pressure (S) and respiration (R) towards heart
period (H), then analyzing less physiologically known influences observedwith S andR as the target processes,
andfinally discussing the impact of long range correlations on the oberved patterns ofmultiscale interaction.

5.1.Multiscale analysis of cardiovascular and cardiorespiratory interactions
The increase of transfer entropy fromS toH at lower time scales (figure 3 a1)when going from rest to tilt is in
agreementwith previous studies (Westerhof et al 2006, Faes et al 2011a, Krohova et al 2019) indicating indicating
the dominance of baroreflex-mediated interactions during orthostatic stress. The statistically significant
differences evidenced formid-range time scales also indicate that S has themost relevant part of its dynamics in
the LF andVLF bands, as already noted in (Krohova et al 2019), and that postural stress induces changes to such
dynamics noticeable in awider range of time scales. For theUP position, at τ= 1 the information transfer from
R toH (figure 3 a2) is significantly lower than in rest. This is in accordance with previous findings evidencing that
the respiratory sinus arrhythmia (RSA) decreases with tilt (Porta et al 2012, Javorka et al 2018, Krohova et al
2019), probably due to the decreased parasympatheticallymediated RSA. The trend is different for longer time
scales, at which the information transfer fromR toHbecomes significantly higher than in rest, indicating the
prevalence of slower oscillations in the information transfer fromR toH, i.e. slowly varying respiration
influences (mostly related to spontaneous changes of the respiratory pattern) are transferredmore to slower
HRVoscillations during postural stress (Krohova et al 2019). The two previous effects produce a higher joint
information transfer (figure 3 a3) duringUP for time scales from2 to 9, denoting stronger redundancy, as seen in
figure 3 a4 from the negative I and from figure 3 a5-a6 (higher redundancy than synergy) for time scales up to 7.
Physiologically, such results confirmpreviousfindings indicating that postural stress produces a strong
activation of baroreflex-mediated RSA, pathR→ S→H, especially for time scales longer than τ> 1. This
confirms that baroreflex is a fundamentalmechanism for slower heart rate oscillations, which should be studied
in the LF band (Krohova et al 2019, Pernice et al 2021).

Regarding the comparison betweenmental stress and SU2, the transfer entropyTS→H is higher duringMA if
compared to rest atmid-range time scales (3� τ� 6) (figure 3 b1), reflecting the activation of vasomotion
associatedwith enhancement of slower blood pressure oscillations. Conversely, there is a significant decrease of
information transfer fromR toH at lower time scales (τ= 1, 2) duringmental stress (figure 3 b2), indicating an
overall weakening of the influence of respiration on heart rate, which is in agreementwith vagal inhibition, but
also the lower involvement of baroreflex-mediated RSA, provoked by stress challenges already demonstrated in
previousworks (Faes et al 2011a, Javorka et al 2018, Krohova et al 2019), and it is also in accordancewith reduced
cardiorespiratory interactions and synchronization occurring duringmental task (Zhang et al 2010,Widjaja et al
2013, Pernice et al 2021). The combination of these results suggests thatmental stress not only produces the
weakening of RSAdue to vagal inhibition, but also the non-activation of baroreflex-mediated RSA
(R→ S→H), differently frompostural stress; these observations are supported by previous findings in the
literature (Krohova et al 2019). The results of joint information transfer (figure 3 b3) evidence the progressive
increase occurring during themental stress from time scale 1 to time scale 4: for τ= 1 there is a significant
decrease duringMAdriven by the prevalence of respiratory dynamics, then there is the activation of baroreflex
effects formid-range time scales that produces the prevalence of information transfer fromS dynamics with
regard to slower oscillations (the increase becomes statistically significant inMA just for τ= 4). Such effect is not
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statistically significant for τ= 5 and higher scales, differently frompostural stress (figure 3 a3), given the lower
influence of respiratory dynamics already starting from τ= 3. Thismay be due to the the combined effect of (i)
vasomotor reactions elicited byMA through corticalmechanisms reflected in SAP changes and then transferred
toHRV through the baroreflex and (ii) the reducedRSAdue to the significant increase in the breathing rate
duringMA if compared to SU2; again, such interpretations agreewith (Krohova et al 2019). This difference
between the stress conditions and the corresponding resting state across the various time scales emphasizes the
importance of employing amultiscale approachwhen studying cardiovascular and cardiorespiratory
interactions, suggesting also that such interactions include complexmultiscale patterns which respond flexibly
to stress challenges (Widjaja et al 2013, Krohova et al 2019). No statistically significant differences betweenMA
and SU2 are detected, at any time scale, analyzing the interaction transfer entropy (Figure 3 b4), and neither with
regard to redundancy (Figure 3 b5) or synergy (figure 3 b6), conversely to postural stress, evidencing that the
mechanisms underlying postural andmental stress are different, not only when ‘raw’ signals (i.e. at τ= 1) are
considered, but alsowhen going through a fullmultiscale analysis. This also supports the importance of
employing amultiscale approach to shedmore light on suchmechanisms, and its potential usefulness to
differentiate between stress conditions.

The analysis ofmarginalmeans (figure 4) indicates the prevalence of redundancy only for τ= 1 during SU1,
and also for τ= 2 during tilt, and this can be put in relation to the activation of baroreflex due to the postural
stress.Moreover, the difference betweenTS→H andTR→H indicates for τ< 4 the prevalence of information
transfer from respiration to heart rate, evidencing the dominance of RSA on short time scales. The opposite is
instead observed formid-range scales (τ from5 to 9), thus confirming once again that S has themost relevant
part of its dynamics in the LF andVLF bands, and that transfersmore information toH than respirationwhen
assessed only for slower oscillations (Krohova et al 2019). Similar trends are reported comparing the two
different stress typologies (MAandUP), with the only difference being evidenced for τ= 3, with a prevalence of
redundancy for S at τ= 2 during postural stress. Conversely, we notice an increase of the information transfer
fromS (instead thanR) toHduringmental stress,ggesting thatmental stress strengthens respiration-unrelated
baroreflex effects. Overall, the obtained results highlight that head-up tilt induces scale-dependent variations in
the transfer entropy of arterial pressure, higher in themid-scales associatedwith slow oscillations, and lower
associated to the effects of respiration. This result is similar towhat observed in (Faes et al 2019)with regard to
complexity of arterial pressure time series.

5.2.Multiscale analysis of interactions directed towards systolic arterial pressure or respiration variability
It is well known that the pathway fromH to S is influenced by the Frank-Starling law according towhich heart
period variations affect the end diastolic volume and thus the strength of the systolic contraction. The decrease
of TE fromH to S during postural stress (figure 5(a1)) is in agreementwith the decrease of the causal interactions
fromH to diastolic arterial pressure (DBP) and fromDBP to S reported in (Westerhof et al 2009, Javorka et al
2017). Physiologically, thismay be due to the changes in the peripheral vascular resistance associatedwith
sympathetic activation during baroreceptors unloading, or alternatively to the a lowermagnitude of heart rate
oscillations associatedwith orthostasis (Cooke et al 1999). Our results expand suchfindings evidencing that
these trends are then inverted for longer time scales, for which higher TE fromH to S is observed; such increased
transfer is associatedwith a tilt-induced shift from increasing ITE at short time scales to decreasing ITE at longer
scales (figures 5(a1), (a4)). Thus, ourmultiscale analysis reveals that the postural stress decreases the redundancy
betweenH andRwhile driving S at short scales, and increases such redundancy at longer scales; physiologically,
thismay be an indication of complex interactions between the slower rhythms of heart rate variability and the
modulation of respiratory amplitude at these lower frequencies. The physiological interpretationsmade for
postural stress, considering S as the target process, are not valid formental stress, similar towhat found in
(Javorka et al 2017), where however the strength of the connection along the the direction fromDBP to Swas
also decreased duringmental stress.

When respirationwas taken as the target ofmultiscale analysis of information transfer, we documented that
postural stress induces at short temporal scales lower values of the information transfer fromheart period
togetherwith higher values of the information transfer from systolic pressure and of the joint information
(figure 6(a1)–(3)). These results are associatedwith increased synergy betweenHand Swhile they transfer
information to R (figure 6(a1)–(3)). Previous studies have suggested that the heart rate dynamics are not only
driven by respiration, but also influence it, resulting in bidirectional coupling betweenH andR that reflect a
closed-loop cardiorespiratory interaction (Saul et al 1989, Yana et al 1993, Perrott andCohen 1996, Porta et al
2013). Our results approach the study of these interactions from an entirely new point of view, and document
the synergistic role played by heart rate and arterial pressure slow oscillations in influencing the respiratory
dynamics during head-up tilt. The enhancement of synergy suggests that postural stress evokes separate
mechanismswherebyH and S drive R during tilt, the first possibly related to afferent commands to the
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respiratory centers in the central autonomic network and the second tomechanical influences
(Benarroch 1993).

On the other hand, during themental stress, the low values ofTS→R and its increase for τ= 1, 2, suggests that
S influences R only for faster time scales duringMA. The lower values ofTS→R compared toTR→S are in
agreementwith a previous study (Porta et al 2013) that underlined that systolic pressure variations at the
respiratory rate are due to the respiratory-related fluctuations of intrathoracic pressuremodulating right and left
preloads and, in turn, stroke volume, while the negligible causality in the other direction is due to the fact that
fast neural actions do not influence the relation betweenR and S.

5.3. Long-range correlations andmultiscale information transfer
Our simulation study revealed that long-range correlations have a substantial impact on themultiscale
information transfer fromone process to another, as well as on the synergistic/redundant interactions between
two source processes sending information to the target. In particular, we noticed that increasing the strength of
long-range correlations in a source process reduces the information transferred towards the target and enhances
synergistic effects over redundant ones (figure 2(a)), while the opposite trends (i.e., higher information transfer
and higher redundancy) are observedwhen long-range correlations become stronger in the target process
(figure 2(b)). These findings can be translated to the results of our experimental analysis, also considering
previous results showing that long-range correlations are almost absent in respiration variability while they are
substantial in heart period and systolic arterial pressure variability and tend to increase with physiological stress
(Martins et al 2020). In fact, the presence of long-range correlations in the target processH, and the
strengthening during postural stress, can explain the increased information transfer and the increased
redundancy observed during tilt in the analysis of cardiovascular and cardiorespiratorymultivariate interactions
(figure 5(a)). In the sameway, long-range correlations are very important during tilt for the systolic pressure
(Martins et al 2020), and thismay explain the increased information transfer and the increased redundant
transfer toward S at intermediate and long time scales observed during postural stress (figure 6(a)). Interestingly,
opposite trends are observedwhen the respiration signal is taken at the target of the analysis of information
transfer: the postural stress induces lower information transfer fromH toR and higher synergistic transfer from
Hand S to R (figure 6(a)); in this case, long-range correlations are in the source processH and this explains the
observed results in agreementwith the simulation offigure 2(a).

6. Final remarks

The aimof this studywas to introduce an analytical framework, formultivariate Gaussian processes, where both
IID and PID can be exactly evaluated in amultiscale fashion.Due to its parametric formulation, themethod
presented in this work inherits the computational efficiency of linearmultiscale entropy (Faes et al 2017), and
more importantly, theVARFImodeling allows the description of both the short termdynamics and the long
term correlations. Since long-range correlations are a crucial component ofmultiscale dynamics, this approach
opens theway for a reliable estimation of the informationmodification of a variety of natural andman-made
processes inwhich distinctmechanisms coexist and operate acrossmultiple temporal scales. The application of
this approach to the cardiovascular and cardiorespiratory dynamics highlights the scale-dependent variations of
the information transfermeasures of the signals herein considered. In particular, our results evidenced the
impact of slow trends reflecting long-range correlations, present in the time series of heart period and arterial
pressure, on the physiologicalmechanisms regulating their variability during postural stress, as well as on the
modulation effects that these cardiovascular variables have on the respiratory amplitude.Moreover, our results
indicate thatmental stress reinforces respiration-unrelated baroreflex effects.

Future developments of this work encompass the refinement of the SSmodel structure to support the
description of long-range correlations (Sela andHurvich 2009)with possible extension to nonstationary and
cointegrated processes (Kitagawa 1987, Johansen andNielsen 2019, Gil-Alana andCarcel 2020). The
applicability of thismethod of analysis to non-Gaussian processes, with accurate analytical solutions or
computationally-reliable estimatingmethodologies, remains a fundamental challenge in thefield. This is an
important direction for future research since real-world processes frequently feature non-Gaussian
distributions.

In termsof application contexts, themethodology proposed in this study canbe exploited to characterize the
altered cardiovascular and respiratory dynamics in a range of pathological states, e.g. including diabetis (Sorelli et al
2022) andpulmonaryfibrosis (Santiago-Fuentes et al 2022).Moreover, the studyofmultivariatemultiscale
dynamics is particularly interesting in econometrics (Zhang et al 2019) andneuroscience (Courtiol et al 2016),
where dynamics spanningmany temporal scales are frequently observed andmultichannel data gathering is
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widespread. Inparticular, themethodologyproposed in thiswork can be very useful to study the effects in longer
time scales of the interactions betweenbrain and theheart (Pernice et al 2021, Silvani et al 2016, Almeida et al2017).
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