We propose a new non-convex penalty in linear regression models. The new penalty function can be considered a competitor of the LASSO, SCAD or MCP penalties, as it guarantees sparse variable selection while reducing bias for the non-null estimates. We introduce the methodology and present some comparisons among different approaches.

Daniele Cuntrera, Vito Muggeo, Luigi Augugliaro (2022). Variable Selection with Quasi-Unbiased Estimation: the CDF Penalty. In Proceedings of the 36th International Workshop on Statistical Modelling (pp. 144-149).

Variable Selection with Quasi-Unbiased Estimation: the CDF Penalty

Daniele Cuntrera
;
Vito Muggeo;Luigi Augugliaro
2022-07-01

Abstract

We propose a new non-convex penalty in linear regression models. The new penalty function can be considered a competitor of the LASSO, SCAD or MCP penalties, as it guarantees sparse variable selection while reducing bias for the non-null estimates. We introduce the methodology and present some comparisons among different approaches.
lug-2022
978-88-5511-309-0
Daniele Cuntrera, Vito Muggeo, Luigi Augugliaro (2022). Variable Selection with Quasi-Unbiased Estimation: the CDF Penalty. In Proceedings of the 36th International Workshop on Statistical Modelling (pp. 144-149).
File in questo prodotto:
File Dimensione Formato  
Proceedings_IWSM_36_Trieste_2022-145-150.pdf

Solo gestori archvio

Descrizione: Contributo completo
Tipologia: Versione Editoriale
Dimensione 931 kB
Formato Adobe PDF
931 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/564922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact