Polymeric hydrogels are increasingly being considered as a scaffold for tissue engineering because they show similarity to the extracellular matrix (ECM) of many tissues. To control various cellular processes, hydrogels are often functionalized or loaded with various bioactive molecules such as: specific ligands for adhesion receptors, growth factors, hormones, enzymes, and other natural or synthetic regulators of cellular behavior [1]. Cell adhesion is essential for cell communication and regulation of the cell cycle and is therefore of vital importance in tissue engineering. Biomimetic approaches have been investigated to facilitate cell-scaffold adhesion interactions. In particular, the recombinant mussel Perna viridis foot protein 5β (Pvfp5β) was developed. Mussel adhesion is made possible by the secretion of a waterproof protein-based adhesive composed of a mixture of proteins called mussel adhesive protein (MAP) or mussel foot protein (mfps). This allows it to be fixed to almost any type of surface when wet [2]. In this work, a two-step physical gelling process is used to create hydrogel scaffolds with a 50 wt% mixture of k-carrageenan (kC) and polyvinyl alcohol (PVA), which are coated with Pvfp5β. The mechanical and morphological properties of hydrogels were investigated both after conditioning in a typical cell culture medium and after coating with Pvfp5β. The protein was strongly adsorbed on the surface of the hydrogel and, as shown by confocal analysis, was able to interact primarily with the kC component of the scaffold and penetrate into it to some depth. NIH-3T3 mouse embryonic fibroblasts were seeded in hydrogel and cultured for up to 2 weeks. The role of Pvfp5β in promoting cell adhesion, diffusion and colonization of scaffolds was verified. References [1] H. W. Ooi, S. Hafeez, C. A. van Blitterswijk, L. Moroni, and M. B. Baker, Mater. Horiz., 2017, 4 (6), 1020–40. [2] Y. He, C. Sun, F. Jiang, B. Yang, J. Li, C. Zhong, L. Zheng, H. Ding, Soft Matter, 2018, 14, 7145–7154,

Emanuela Muscolino, M.A.C. (2022). Recombinant mussel protein Pvfp5β enhances cell adhesion of poly(vinyl alcohol)/k-carrageenan hydrogel scaffolds. In IX WORKSHOP AICIng Chemistry for sustainable materials Ancona 16-17 Giugno 2022.

Recombinant mussel protein Pvfp5β enhances cell adhesion of poly(vinyl alcohol)/k-carrageenan hydrogel scaffolds

Emanuela Muscolino;Maria Antonietta Sabatino;Sabina Alessi;Clelia Dispenza
2022-06-16

Abstract

Polymeric hydrogels are increasingly being considered as a scaffold for tissue engineering because they show similarity to the extracellular matrix (ECM) of many tissues. To control various cellular processes, hydrogels are often functionalized or loaded with various bioactive molecules such as: specific ligands for adhesion receptors, growth factors, hormones, enzymes, and other natural or synthetic regulators of cellular behavior [1]. Cell adhesion is essential for cell communication and regulation of the cell cycle and is therefore of vital importance in tissue engineering. Biomimetic approaches have been investigated to facilitate cell-scaffold adhesion interactions. In particular, the recombinant mussel Perna viridis foot protein 5β (Pvfp5β) was developed. Mussel adhesion is made possible by the secretion of a waterproof protein-based adhesive composed of a mixture of proteins called mussel adhesive protein (MAP) or mussel foot protein (mfps). This allows it to be fixed to almost any type of surface when wet [2]. In this work, a two-step physical gelling process is used to create hydrogel scaffolds with a 50 wt% mixture of k-carrageenan (kC) and polyvinyl alcohol (PVA), which are coated with Pvfp5β. The mechanical and morphological properties of hydrogels were investigated both after conditioning in a typical cell culture medium and after coating with Pvfp5β. The protein was strongly adsorbed on the surface of the hydrogel and, as shown by confocal analysis, was able to interact primarily with the kC component of the scaffold and penetrate into it to some depth. NIH-3T3 mouse embryonic fibroblasts were seeded in hydrogel and cultured for up to 2 weeks. The role of Pvfp5β in promoting cell adhesion, diffusion and colonization of scaffolds was verified. References [1] H. W. Ooi, S. Hafeez, C. A. van Blitterswijk, L. Moroni, and M. B. Baker, Mater. Horiz., 2017, 4 (6), 1020–40. [2] Y. He, C. Sun, F. Jiang, B. Yang, J. Li, C. Zhong, L. Zheng, H. Ding, Soft Matter, 2018, 14, 7145–7154,
16-giu-2022
Pvfp5β; Adhesive protein; EGF-like motifs; Poly(vinyl alcohol)/k-carrageenan; 3D scaffolds; Cell-laden
Emanuela Muscolino, M.A.C. (2022). Recombinant mussel protein Pvfp5β enhances cell adhesion of poly(vinyl alcohol)/k-carrageenan hydrogel scaffolds. In IX WORKSHOP AICIng Chemistry for sustainable materials Ancona 16-17 Giugno 2022.
File in questo prodotto:
File Dimensione Formato  
Abstract Workshop aicing 2022 - Muscolino.pdf

Solo gestori archvio

Descrizione: Abstract
Tipologia: Versione Editoriale
Dimensione 112.35 kB
Formato Adobe PDF
112.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/564035
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact