Motivated by the analysis of crime data in Bucaramanga (Colombia), we propose a spatio-temporal Hawkes point process model adapted to events living on linear networks. We first consider a non-parametric modelling strategy, for both the background and the triggering components, and then we include a parametric estimation of the background based on covariates, and a non-parametric one of the triggering effects. Our network model outperforms a planar version, improving the fitting of the self-exciting point process model.
Nicoletta D'Angelo, David Payares, Giada Adelfio, Jorge Mateu (2022). Hawkes processes on networks for crime data. In Proceedings of the 36th International Workshop Statistical Modelling (pp. 414-417).
Hawkes processes on networks for crime data
Nicoletta D'Angelo
;Giada Adelfio;Jorge Mateu
2022-01-01
Abstract
Motivated by the analysis of crime data in Bucaramanga (Colombia), we propose a spatio-temporal Hawkes point process model adapted to events living on linear networks. We first consider a non-parametric modelling strategy, for both the background and the triggering components, and then we include a parametric estimation of the background based on covariates, and a non-parametric one of the triggering effects. Our network model outperforms a planar version, improving the fitting of the self-exciting point process model.File | Dimensione | Formato | |
---|---|---|---|
Proceedings_IWSM_36_Trieste_2022 (1).pdf
Solo gestori archvio
Descrizione: Contributo completo
Tipologia:
Versione Editoriale
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.