We propose a local version of the spatio-temporal log-Gaussian Cox processes (LGCPs) employing the Local Indicators of Spatio-Temporal Association (LISTA) functions into the minimum contrast procedure to obtain space as well as time-varying parameters. We resort to the joint minimum contrast method fitting method to estimate the set of second-order parameters for the class of spatio-temporal LGCPs. This approach has the advantage of being usable in the case of both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field (GRF).

Nicoletta D'Angelo, Giada Adelfio, Jorge Mateu (2022). Locally weighted spatio-temporal minimum contrast for Log-Gaussian Cox Processes. In Proceedings of the 10th International Workshop on Spatio-Temporal Modelling (pp. 173-178).

Locally weighted spatio-temporal minimum contrast for Log-Gaussian Cox Processes

Nicoletta D'Angelo
;
Giada Adelfio;
2022-01-01

Abstract

We propose a local version of the spatio-temporal log-Gaussian Cox processes (LGCPs) employing the Local Indicators of Spatio-Temporal Association (LISTA) functions into the minimum contrast procedure to obtain space as well as time-varying parameters. We resort to the joint minimum contrast method fitting method to estimate the set of second-order parameters for the class of spatio-temporal LGCPs. This approach has the advantage of being usable in the case of both separable and non-separable parametric specifications of the correlation function of the underlying Gaussian Random Field (GRF).
2022
978-84-9144-364-3
Nicoletta D'Angelo, Giada Adelfio, Jorge Mateu (2022). Locally weighted spatio-temporal minimum contrast for Log-Gaussian Cox Processes. In Proceedings of the 10th International Workshop on Spatio-Temporal Modelling (pp. 173-178).
File in questo prodotto:
File Dimensione Formato  
metma2022locally.pdf

Solo gestori archvio

Descrizione: Contributo completo
Tipologia: Versione Editoriale
Dimensione 371.04 kB
Formato Adobe PDF
371.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/555745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact