We compare a Perron-type integral with a Henstock-Kurzweiltype integral, both having been introduced to recover functions from their generalized derivatives defined in the metric Lr. We give an example of an HKr-integrable function which is not Pr-integrable, thereby showing that the first integral is strictly wider than the second one.
Musial P., Skvortsov V., Tulone F. (2022). THE HKr-INTEGRAL IS NOT CONTAINED IN THE Pr-INTEGRAL. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 150(5), 2107-2114 [10.1090/proc/15788].
THE HKr-INTEGRAL IS NOT CONTAINED IN THE Pr-INTEGRAL
Tulone F.
2022-01-01
Abstract
We compare a Perron-type integral with a Henstock-Kurzweiltype integral, both having been introduced to recover functions from their generalized derivatives defined in the metric Lr. We give an example of an HKr-integrable function which is not Pr-integrable, thereby showing that the first integral is strictly wider than the second one.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
S0002-9939-2022-15788-8_1.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
128.88 kB
Formato
Adobe PDF
|
128.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
pams_correct.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
164.47 kB
Formato
Adobe PDF
|
164.47 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.