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Abstract. We compare a Perron-type integral with a Henstock-Kurzweil-
type integral, both having been introduced to recover functions from their
generalized derivatives defined in the metric L

r. We give an example of an
HKr-integrable function which is not Pr-integrable, thereby showing that the
first integral is strictly wider than the second one.

1. History and aim

It is known that the Lebesgue integral does not integrate all derivatives. To solve
the problem of recovering a function from its derivative Denjoy, at the beginning
of the 1900s, introduced a very complicated process of integration that he called
totalization and that became known as the special Denjoy integral (or D∗-integral).
About the same time, Lusin gave a descriptive definition of the D∗-integral, having
defined the class of ACG∗-functions which characterizes the D∗-primitives in the
same way that the class of absolutely continuous functions characterizes the indef-
inite Lebesgue integrals. A little bit later Perron [15] solved the same problem of
recovering a primitive by using a method based on approximation of the primitive
by major and minor functions (see also [16]). At last in the 1960s Henstock and
Kurzweil introduced a very simple Riemann-type integral to handle all derivatives
(see [6],[7],[8],[9]). All those approaches turned out to lead to integrals equivalent
to the D∗-integral (see [5]).

Similar problems of recovering primitives in terms of various generalized deriva-
tives arise in many areas of analysis. For example, in harmonic analysis, a problem
of recovering coefficients of series with respect to an orthogonal system from their
sums can be reduced to the integration of an appropriate generalized derivative
chosen in accordance with the considered system. In classical harmonic analysis,
integration of the approximate symmetric derivative solves this problem of recover-
ing the coefficients of trigonometric series (see [23]), while in the case of series with
respect to characters of dyadic Cantor groups or of its generalizations the dyadic
and p-adic derivatives and derivatives with respect to various derivate bases do
the job (see [13], [14], [19], [20] and [21]). Generalizations of Denjoy, Perron and
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Henstock-Kurzweil integrals were introduced to integrate each of those generalized
derivatives. It is remarkable that such generalized Perron-type integrals were, as
a rule, equivalent to the respective Henstock-Kurzweil-type integrals as well as to
descriptively defined Denjoy-Lusin-type integrals (see [19] [21] and [24]). All these
integrals were shown to possess so called Hake property, i.e., cover a respectively
defined improper integral (see [2], [18] and [22]). These definitions were extended
also to functions defined or ranging in some kind of abstract spaces (see [1], [17]).

In this paper we consider integrals defined to deal with another type of derivative,
the Lr-derivative, i.e., a derivative in the metric Lr. It was introduced by Calderón
and Zygmund in 1961 in order to establish pointwise estimates for solutions of
elliptic partial differential equation (see [3]). Gordon [4] in 1968 described a Perron-
type integral, the Pr-integral, that recovers a function from its Lr-derivative, and
considered an application of the Lr-derivative and the Pr-integral to Fourier series.
In 2004, Musial and Sagher [10] defined the Lr-Henstock-Kurzweil integral, the
HKr-integral, that also recovers a function from its Lr-derivative, and showed that
it is an extension of the Pr-integral. They also obtained a Lusin-type descriptive
definition of the HKr-integral in terms of ACGr-functions. Some other properties
of the HKr-integral were investigated recently in [11] and [12]. But it has been an
open problem since 2004 as to whether the Pr-integral integrates allHKr-integrable
functions.

Here we show that, in contrast to the classical case and to many other cases re-
lated to generalized derivatives mentioned above, theHKr-integral is not equivalent
to the Pr-integral. More precisely, we construct an example of an HKr-integrable
function which is not Pr-integrable and thereby show that the HKr-integral is
strictly wider than the Pr-integral.

2. Definitions and preliminary results

Throughout this paper we assume that r ≥ 1 and we work on the closed interval
[a, b]. We begin by giving the definitions of the Lr-derivates and the Lr-derivative.

Definition 2.1 ([4]). Let f ∈ Lr [a, b]. We define the upper right Lr-derivate of f
at x, denoted by D+

r f (x), to be the greatest lower bound of all α such that

(2.1)

(
1

h

∫ h

0

[f (x+ t)− f (x)− αt]
r
+ dt

) 1

r

= o (h) as h → 0+.

If no real number α satisfies (2.1), we set D+
r f (x) = +∞. If (2.1) holds for every

real number α, we set D+
r f (x) = −∞.

We define the lower right Lr-derivate, D+,rf (x), the upper left Lr-derivate,
D−

r f (x), and the lower left Lr-derivate, D−,rf (x), in a similar manner.

Definition 2.2 ([4]). We define the upper (two-sided) Lr derivate as follows:

Drf (x) = max
{
D+

r f (x) , D−
r f (x)

}
.

Similarly we define the lower (two-sided) Lr-derivate as follows:

Drf (x) = min {D+,rf (x) , D−,rf (x)} .

Definition 2.3 ([4]). Let f ∈ Lr [a, b]. If Drf (x) and Drf (x) are the same real
number, i.e., if all four Lr-derivates are equal and finite, then we say that f is

franc
Matita

franc
Matita



THE HKr-INTEGRAL IS NOT CONTAINED IN THE Pr-INTEGRAL 2109

Lr-differentiable at x. The common value, denoted by f ′
r(x), is the Lr-derivative

of f at x.

If f is Lr-differentiable at x, then f ′
r(x) is the unique real number α such that(

1

h

∫ h

−h

|f (x+ t)− f (x)− αt|r dt

) 1

r

= o (h) .

It is clear that if a function f is differentiable at a point x then it is also Lr-
differentiable at the same point and f ′

r(x) = f ′(x).
To define Lr-major functions and Lr-minor functions, we need a notion of Lr-

continuity.

Definition 2.4 ([4]). A function F ∈ Lr [a, b] is said to be Lr-continuous at x ∈
[a, b] if

lim
h→0

1

2h

∫ x+h

x−h

|F (y)− F (x)|r dy = 0.

If F is Lr-continuous for all x ∈ E, we say that F is Lr-continuous on E.

Definition 2.5 ([4]). Suppose f is a function defined on [a, b]. A finite-valued
function ψ ∈ Lr [a, b] is said to be an Lr-major function of f if

(1) ψ (a) = 0,
(2) ψ is Lr-continuous on [a, b],
(3) except for at most a denumerable subset of [a, b] we have

(2.2) −∞ �= Drψ(x) ≥ f(x).

A function φ is an Lr-minor function of f if −φ is an Lr-major function of −f.

It was proved in [4] that for any Lr-major function ψ and any Lr-minor function
φ of f , the function ψ − φ is non-decreasing on [a, b] . This property allows us to
define the Perron-type Pr-integral in a standard way:

Definition 2.6 ([4]). Suppose f is a function defined on [a, b]. If inf ψ (b) taken
over all Lr-major functions of f equals supφ (b) taken over all Lr-minor functions
of f , then the common value, denoted by

(Pr)

∫ b

a

f

is called the Pr-integral of f on [a, b], and f is said to be Pr-integrable on [a, b] .

Remark 2.7. We cannot avoid the exceptional set for the inequality (2.2) in the
definition of Lr-major and Lr-minor functions without losing the so-called Hake
property of the Pr integral (see Example 1, §7 in [4]). This fact shows also that,
in contrast to the classical case (see [5]), the requirement that the inequality (2.2)
must hold everywhere leads to an integral that is more narrow than the original L.
Gordon integral.

Now we recall the definition of Lr-Kurzweil-Henstock-type integral given in [10].
In what follows a tagged interval is a pair (x, [c, d]) where x ∈ [c, d] is a tag, [c, d] ⊂
[a, b], and a gauge is a strictly positive function δ on [a, b]. We say that (x, [c, d]) is
δ-fine if [c, d] ⊂ [a, b] ∩ [x− δ(x), x+ δ(x)].
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Definition 2.8. A function f : [a, b] → R is Lr-Henstock-Kurzweil integrable
(HKr-integrable) on [a, b] if there exists a function F ∈ Lr [a, b] so that for any
ε > 0 there exists a gauge δ so that for any finite collection of nonoverlapping δ-fine
tagged intervals Q = {(xi, [ci, di]) , 1 ≤ i ≤ q} we have

q∑
i=1

(
1

di − ci

∫ di

ci

|F (y)− F (xi)− f (xi) (y − xi)|
r
dy

)1/r

< ε.

By Theorem 5 in [10], the function F in Definition 2.8 is unique up to an additive
constant, so we can consider the indefinite HKr-integral

F (x) = (HKr)

∫ x

a

f, for each x ∈ (a, b] .

It was also proved in [10] that the indefinite HKr-integral F is Lr-continuous
on [a, b] with F ′

r(x) = f(x) a.e. on [a, b].
One of the main results in [10] was the following

Theorem 2.9. If f : [a, b] → R is Pr-integrable then it is HKr-integrable and the

values of integrals coincide.

An equivalent descriptive definition of the HKr-integral was obtained in [10]
using following absolute continuity condition.

Definition 2.10 ([10]). Let E ⊂ [a, b]. We say that F ∈ ACr(E) if for all ε > 0
there exist η > 0 and a gauge δ defined on E so that for any finite collection
of nonoverlapping δ-fine tagged intervals {(xi, [ci, di]) , 1 ≤ i ≤ q} having tags in E
and such that

∑q
i=1(di − ci) < η we have

(2.3)

q∑
i=1

(
1

di − ci

∫ di

ci

|F (y)− F (xi)|
rdy

)1/r

< ε.

Definition 2.11. We say that F ∈ ACGr(E) if E can be written as E = ∪∞
n=1En

where F ∈ ACr(En) for all n.

Now a descriptive characterization of the HKr-integral is given by the following
result in [10].

Theorem 2.12. A function f is HKr-integrable on [a, b] if and only if there exists

F ∈ ACGr[a, b] such that F ′
r = f a.e.; the function F (x)−F (a) being the indefinite

HKr-integral of f .

Remark 2.13. It is an open problem whether the class ACGr[a, b] coincides with
the class of HKr-primitives. This problem is equivalent to the question of whether
each function in the class ACGr[a, b] is L

r-differentiable a.e.

3. Main result

We show here that the converse of Theorem 2.9 is not true, i.e., the class of Pr-
integrable functions is strictly included in the class of HKr-integrable functions.
Namely we prove the following

Theorem 3.1. There exists a function which is HKr-integrable on [a, b] but which
is not Pr integrable on [a, b].
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Proof. We construct a function F ∈ ACGr[0, 1] such that F ′
r exists a.e., and so by

Theorem 2.12, F is the HKr integral of its Lr-derivative f := F ′
r. We then show

that f is not Pr integrable.
Let P ⊂ [0, 1] be a symmetric perfect Cantor-type set with contiguous intervals

un of rank n = 1, 2, . . . each having length |un| = 3−n2−n+2. The set which is left
after removing all contiguous intervals up to rank n from [0, 1] is constituted by 2n

segments (closed intervals) rn of total length 3−n which are called segments of rank

n. So |P | = 0. Note that each un is the interval concentric with some interval rn−1

(we put r0 = [0, 1]).
Let vn be the interval concentric with un such that

(3.1) |vn| = 6−rn|un| = 3−(r+1)n2−(r+1)n+2.

Now we define a function F which will serve as the indefinite HKr-integral for its
derivative. We put F (x) = 0 outside of the union of intervals vn of all rank, i.e.,
on the set P and on each set un \ vn. We put F (x) = 2n/r if x ∈ vn. We want the
function F to be differentiable on un. It is clear how to make it smooth changing it
in small neighborhoods of endpoints of vn, without influencing further estimations.
We keep the same notation F for the modified function, but to simplify computation
we shall allow ourselves to treat it as if it has its original constant values on all vn
and un \ vn. So we have

(3.2)

∫
un

F r =

∫
vn

F r =
4

3(r+1)n2rn

and

(3.3)
1

|un|

∫
un

F r =
1

3rn2(r−1)n
.

Summing (3.2) over all intervals un we get∫ 1

0

F r =
∞∑

n=1

2n−1 4

3(r+1)n2rn
=

2

3r+12r−1 − 1
.

Hence F ∈ Lr[0, 1]
Note that F is differentiable a.e. on [0, 1]. To show that

f(x) =

{
F ′(x) at x ∈ [0, 1] \ P,

0 at x ∈ P

isHKr-integrable with F being its indefinite integral, we check that F ∈ACGr[0, 1].
In turn, this is reduced to checking that F ∈ ACr(P ).

We have to show that for any ε > 0 we can find η > 0 (and a gauge δ, but in
fact our gauge can be arbitrary) so that for any partition {(xi, Ii)} tagged in P the

inequality
∑

i |Ii| < η implies
∑

i=1

(
|Ii|

−1
∫
Ii
F r

)1/r

< ε.

Choose n such that (2/3)n < ε/8 and take η = 1
2 (|un| − |vn|). Let {(xi, Ii)}

be any partition tagged in P with
∑

i |Ii| < η. Then |Ii| <
1
2 (|un| − |vn|) and so

Ii∩vk = ∅ and
∫
Ii∩uk

F = 0 for any k ≤ n and each i. At the same time if Ii∩vk �= ∅

for k > n, then |Ii ∩ uk| >
1
2 (|uk| − |vk|) >

1
4 |uk| and by (3.3) we have

(3.4)
1

|Ii ∩ uk|

∫
Ii∩uk

F r ≤
4

|uk|

∫
uk

F r =
4

3rk2(r−1)k
≤

4

3rk
.
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Note that an interval Ii can be represented, up to a set of measure zero, as the
union of its non-void intersections with intervals uk of various ranks. If k ≤ n, then∫
Ii∩uk

F = 0, while if k > n then (3.4) holds.

So we can estimate 1
|Ii|

∫
Ii
F r for each i using the following obvious inequality

for positive numbers

(3.5)

∑
k ak∑
k bk

<
∑ ak

bk

(this is true for infinite sums provided the series are convergent).
We note that there are 2k−1 intervals of rank k. We also note that an interval

uk with k > n can have non-empty intersection with no more than two different Ii
because each such interval must contain either an interval to the right of the left
endpoint of uk or an interval to the left of the right endpoint of uk and note that
for each of these intervals (3.4) applies. Now summing up over i, using (3.4) and
(3.5), and with the assumption that the average value of F over an empty interval
is zero, we finally obtain

∑
i

(
1

|Ii|

∫
Ii

F r

)1/r

≤
∑
i

∑
uk:Ii∩uk �=∅

(
1

|Ii ∩ uk|

∫
Ii∩uk

F r

)1/r

≤

≤
∞∑

k=n+1

2k
(

4

3rk

)1/r

≤ 8

(
2

3

)n

< ε.

So f is HKr-integrable with F being its indefinite integral.
We show now that f has no Lr-minor (as well as no Lr-major) functions. As-

suming that such a minor function m exists, the difference R := F − m is non-
decreasing on [0, 1] (see [4]). To show that this assumption leads to a contradiction,
it is enough to prove that for any non-decreasing function R with R(0) = 0 we have
D+

r (F (x)−R(x)) = +∞ on an uncountable set, and so the function F −R cannot
be an Lr-minor function. In fact the above equality holds at any point of the set
P which is not a left endpoint of any contiguous interval to P . Let x be such a
point. Then for any N we can find n > N such that x ∈ rn ⊂ rn−1 and rn is the
left of two segments of rank n which are subsets of rn−1. Let un be the contiguous
interval of rank n which is concentric with rn−1. Note that |un| is four times the
length of each of the two segments of rank n that straddle it and that un is to the
right of x. Take hn so that un ⊂ (x, x+ hn) and so that

(3.6) hn < 2|un| = 3−n2−n+3.

We are going to show that for a chosen x and for any real α

(3.7) lim sup
n→∞

1

hr+1
n

∫ hn

0

[(F (x+ t)−R(x+ t) +R(x)− αt]r+dt = +∞.

We can assume that n is chosen so that 2
n

r
−1 > R(1) + |α|. Then [(F (x + t) −

R(x + t) + R(x) − αt]+ > 2
n

r
−1 if x + t ∈ vn ⊂ un and using (3.1) and (3.6) we

finally obtain

1

hr+1
n

∫ hn

0

[(F (x+ t)−R(x+ t) +R(x)− αt]r+dt >

|vn|2
n−r

hr+1
n

≥
3−(r+1)n2−(r+1)n+22n−r

3−(r+1)n2−(r+1)n+3(r+1)
= 2n−4r−1.
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This shows that (3.7) holds and that no real α satisfies (2.1) for the function F −R
at the considered x. Therefore Dr(F − R) (x) = +∞ on an uncountable set and
F−R is a Lr-minor function for no R. This proves that f has no Lr-minor function
for any r ≥ 1 and so f is not Pr-integrable. The theorem is proved. �
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