We consider a parametric double phase Dirichlet problem. Using variational tools together with suitable truncation and comparison techniques, we show that for all parametric values λ > λ- the problem has at least three nontrivial solutions, two of which have constant sign. Also, we identify the critical parameter λ precisely in terms of the spectrum of the q-Laplacian.

Papageorgiou N.S., Vetro C., Vetro F. (2020). Multiple solutions for parametric double phase Dirichlet problems. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 23(4), 1-18 [10.1142/S0219199720500066].

Multiple solutions for parametric double phase Dirichlet problems

Vetro C.
;
2020-02-21

Abstract

We consider a parametric double phase Dirichlet problem. Using variational tools together with suitable truncation and comparison techniques, we show that for all parametric values λ > λ- the problem has at least three nontrivial solutions, two of which have constant sign. Also, we identify the critical parameter λ precisely in terms of the spectrum of the q-Laplacian.
21-feb-2020
Papageorgiou N.S., Vetro C., Vetro F. (2020). Multiple solutions for parametric double phase Dirichlet problems. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 23(4), 1-18 [10.1142/S0219199720500066].
File in questo prodotto:
File Dimensione Formato  
2020_CCM_PVV.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 333.78 kB
Formato Adobe PDF
333.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
10447_525558-PVV-CCM-post-print.pdf

accesso aperto

Tipologia: Post-print
Dimensione 372.9 kB
Formato Adobe PDF
372.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/525558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 51
social impact