We study a nonlinear p(x)-Kirchhoff type problem with Dirichlet boundary condition, in the case of a reaction term depending also on the gradient (convection). Using a topological approach based on the Galerkin method, we discuss the existence of two notions of solutions: strong generalized solution and weak solution. Strengthening the bound on the Kirchhoff type term (positivity condition), we establish existence of weak solution, this time using the theory of operators of monotone type.
Vetro C. (2022). Variable exponent p(x)-Kirchhoff type problem with convection. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 506(2), 1-16 [10.1016/j.jmaa.2021.125721].
Variable exponent p(x)-Kirchhoff type problem with convection
Vetro C.
2022-02-15
Abstract
We study a nonlinear p(x)-Kirchhoff type problem with Dirichlet boundary condition, in the case of a reaction term depending also on the gradient (convection). Using a topological approach based on the Galerkin method, we discuss the existence of two notions of solutions: strong generalized solution and weak solution. Strengthening the bound on the Kirchhoff type term (positivity condition), we establish existence of weak solution, this time using the theory of operators of monotone type.File | Dimensione | Formato | |
---|---|---|---|
2022_JMAA_Vetro.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
388.58 kB
Formato
Adobe PDF
|
388.58 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10447_523758-JMAA-pre-print.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
480.72 kB
Formato
Adobe PDF
|
480.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.