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CALOGERO VETRO

Abstract. We study a nonlinear p(x)-Kirchhoff type problem with Dirichlet bound-
ary condition, in the case of a reaction term depending also on the gradient (convec-
tion). Using a topological approach based on the Galerkin method, we discuss the
existence of two notions of solutions: strong generalized solution and weak solution.
Strengthening the bound on the Kirchhoff type term (positivity condition), we estab-
lish existence of weak solution, this time using the theory of operators of monotone
type.

1. Introduction

It is well-known that the mechanisms of fluid movement are quite relevant in deal-
ing with diffusive problems. A largely investigated phenomenon in the study of porous
media, as liquids and gases, is referred as “convection”. Briefly, the phenomenon of
convection consists in the fact that an energy transfer is accomplished by moving par-
ticles. Mainly, it occurs when the temperature gradient exceeds some critical values.
In order to give the possibility to include this phenomenon, we introduce in problem
(1) below a reaction term f(x, z, y) depending on the gradient of the solution. On the
other hand, we generalize our study by considering in the leading operator of problem
(1), a Kirchhoff type term. We recall that the interest for the Kirchhoff type problems
also originates from physical applications (again related to diffusive processes). We
mention that Kirchhoff [13] studied an extension of the D’Alembert wave equation for
free vibrations of elastic strings, of the form

ρ
∂2

∂t2
−

(
P0

h
+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2

∂x2
= 0,

under a suitable set of physical parameters ρ, P0, h, E, L (namely, mass density, initial
tension, area of the cross-section, Young modulus of the material, length of the string).

Let Ω ⊆ RN be a bounded domain with smooth boundary ∂Ω. We consider the
following nonlinear p(x)-Kirchhoff type problem with Dirichlet boundary condition and
with gradient dependence (convection) in the reaction term

(1) −∆K
p(x)u(x) = f(x, u(x),∇u(x)) in Ω, u

∣∣
∂Ω

= 0.

In this problem, ∆p(x) denotes the p(x)-Laplace differential operator defined by

∆p(x)u = div(|∇u|p(x)−2∇u) for all u ∈ W 1,p(x)
0 (Ω),

Key words and phrases. Convection, Galerkin basis, Kirchhoff type term, pseudomonotone operator,
generalized solution, weak solution.
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and we consider a Kirchhoff type term of the form

(2) K(p, u) = ap − bp
∫

Ω

1

p(x)
|∇u|p(x)dx, for some ap, bp > 0.

Therefore by ∆K
p(x), we denote the p(x)-Kirchhoff type operator defined by

∆K
p(x) = K(p, u)∆p(x)u =

(
ap − bp

∫
Ω

1

p(x)
|∇u|p(x)dx

)
div(|∇u|p(x)−2∇u)

for all u ∈ W 1,p(x)
0 (Ω). Here, we assume that the variable exponent p ∈ C(Ω) is finite

with:
1 < p− := inf

x∈Ω
p(x) ≤ p(x) ≤ p+ := sup

x∈Ω

p(x) < +∞.

Since we have a reaction depending on the gradient, then we cannot apply the usual
variational methods (for example, critical point theory and mountain pass theorem) in
the analysis of problem (1), but we follow a topological method. This approach is based
on fixed-point arguments and the theory of operators with monotone type features.

Our first result establishes the existence of a strong generalized solution of prob-

lem (1) (see Definition 1 on Section 3). We work with a Galerkin basis of W
1,p(x)
0 (Ω)

and use some consequences of the classical Brouwer fixed point theorem. The similar
approach is presented by Motreanu [17] for a quasilinear Dirichlet problem with con-
vection, whose leading operator is the operator −∆p + ∆q. This operator is the sum
of a negative p-Laplacian and of a q-Laplacian. Motreanu establishes the existence of
both a generalized solution and of a strong generalized solution, in the case of constant
exponents 1 < q < p < +∞. Some complementary results in the case of the most
classical operator −∆p − ∆q were obtained by Faria-Miyagaki-Motreanu [5] (positive
solutions), Liu-Papageorgiou [15] (resonant reaction) and Gasiński-Winkert [10] (dou-
ble phase operator). In details, [5] develops an approximating process using a Schauder

basis of W
1,p(x)
0 (Ω) and uses a generalized version of the strong maximum principle.

The Leray-Schauder alternative principle solves the main problem in [15], in combina-
tion with the method of frozen variable. The work in [10] focuses on pseudomonotone
operators and their regularity properties. One more reference on the solution of prob-
lems with convection in the reaction, using Leray-Schauder alternative principle, is
Fragnelli-Mugnai-Papageorgiou [7] (Robin problems). Passing to the framework set-
ting of variable exponent, Wang-Hou-Ge [19] studied problem (1) without the Kirchhoff
type term. On the other hand, Hamdani-Harrabi-Mtiri-Repovš [11] studied the same
operator on the left hand side of (1), but without gradient dependence in the reaction.
Consequently, the problem in [11] is variational, and hence the authors establish the
existence of a weak solution and of infinitely many solutions using Palais-Smale com-
pactness condition, mountain pass theorem and Fountain theorem (that is, they work
mainly with critical point theory).

We point out that there is a large literature considering the presence of a Kirchhoff
term weighting the leading operator of elliptic and parabolic equations, usually all these
works consider only a positive defined Kirchhoff term (see also (24) below). Indeed, there
has been a revival interest for the Kirchhoff work after the publication of Lions’ book
[14]. Here we recall the recent works of Molica Bisci-Pizzimenti [16] (infinitely many
solutions) and Figueiredo-Nascimento [6] (sign-changing solution). At the best of our
knowledge, [11] is the first attempt to leave the above mentioned sign restriction on the
Kirchhoff term, and we follow this new feature. So, our work here is the first attempt
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to consider the new nonlocal term (2) in the case of a reaction with convection (that is,
without applying the variational methods).

In the second part of this paper, we will also prove some results in the case of a
positive defined Kirchhoff term. Again, we will use topological tools but this time
mainly related to the theory of operators of monotone type.

2. Mathematical Background - Hypotheses

Here, we collect some notions and notation relevant for the study of elliptic equations
in the context of variable exponent spaces. Further details and motivations, can be found
in the works of Diening-Harjulehto-Hästö-Rŭz̆icka [1] and Rădulescu-Repovš [18].

Problem (1) arises naturally in the framework spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω). Pre-

cisely, we refer to:
• The variable exponent Lebesgue space Lp(x)(Ω) defined by

Lp(x)(Ω) =

{
u : Ω→ R : u is measurable and ρp(u) :=

∫
Ω

|u(x)|p(x)dx < +∞
}
.

On this space, we consider the norm

‖u‖Lp(x)(Ω) := inf
{
λ > 0 : ρp

(u
λ

)
≤ 1
}
.

• The Sobolev space W 1,p(x)(Ω) given as

W 1,p(x)(Ω) := {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.
On this space, we consider the norm

‖u‖W 1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω) (where ‖∇u‖Lp(x)(Ω) = ‖|∇u|‖Lp(x)(Ω)).

Suitable definitions of norms and norm inequalities are the key tools to make possible
calculations on bounds and a priori estimates. From Diening-Harjulehto-Hästö-Rŭz̆icka
[1] (see Theorem 8.2.18, p. 263), we know that

(3) ‖u‖Lp(x)(Ω) ≤ c1‖∇u‖Lp(x)(Ω) for all u ∈ W 1,p(x)
0 (Ω), some c1 > 0,

whereW
1,p(x)
0 (Ω) is theW 1,p(x)-norm closure of C∞0 (Ω). Essentially the norms ‖u‖W 1,p(x)(Ω)

and ‖∇u‖Lp(x)(Ω) are equivalent on the space W
1,p(x)
0 (Ω), and hence we can replace

‖u‖W 1,p(x)(Ω) by ‖∇u‖Lp(x)(Ω). We set

‖u‖ = ‖∇u‖Lp(x)(Ω) in W
1,p(x)
0 (Ω).

If X is a reflexive Banach space and X∗ is the topological dual, then 〈·, ·〉 means
the duality brackets of the pair (X∗, X). According to this notation, for the operator

−∆K
p(x) : W

1,p(x)
0 (Ω)→ W−1,p′(x)(Ω) = W 1,p(x)(Ω)∗, where p′(·) is such that 1

p′(·) + 1
p(·) = 1,

we have

〈−∆K
p(x)u, h〉 = K(p, u)

∫
Ω

|∇u|p(x)−2(∇u,∇h)RNdx for all u, h ∈ W 1,p(x)
0 (Ω).

Continuity of some embeddings and density of Banach spaces are the objects of the
following result (see Gasiński-Papageorgiou [9], p. 141, Lemma 2.2.27).

Theorem 1. Let X, Y be two Banach spaces with X ⊆ Y . If X is dense in Y and the
embedding is continuous, then the embedding Y ∗ ⊆ X∗ is continuous too. In addition,
X reflexive implies that Y ∗ is dense in X∗.
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Our technique of proof is also based on the following consequence of Brouwer fixed
point theorem.

Proposition 1. Let (X, ‖·‖X) be a normed finite-dimensional space and let V : X → X∗

be a continuous map. If there exists some R > 0 such that

〈V (h), h〉 ≥ 0 for all h ∈ X with ‖h‖X = R,

then the equation V (u) = 0 admits a solution u ∈ X such that R ≥ ‖u‖X .

Turning to variable exponent Lebesgue and Sobolev spaces, Fan-Zhao [2] proved that

Lp(x)(Ω), W 1,p(x)(Ω) and W
1,p(x)
0 (Ω), endowed with the above norms, are separable,

reflexive and uniformly convex Banach spaces. In the same paper, one can find the
following interesting results.

Proposition 2. Assume that p ∈ C(Ω) with p(x) > 1 for each x ∈ Ω. If α ∈ C(Ω) and
1 < α(x) < p∗(x) for all x ∈ Ω, then there exists a continuous and compact embedding
W 1,p(x)(Ω) ↪→ Lα(x)(Ω).

If p− > 1, we recall the Hölder inequality

(4)

∫
Ω

uhdx ≤
( 1

p−
+

1

(p′)−

)
‖u‖Lp(x)(Ω)‖h‖Lp′(x)(Ω) ≤ 2‖u‖Lp(x)(Ω)‖h‖Lp′(x)(Ω),

for u ∈ Lp(x)(Ω), h ∈ Lp′(x)(Ω), which is useful in the proof of some embedding results.
We mention that [2, Theorem 1.11] leads to the fact that the embedding Lp1(x)(Ω) ↪→
Lp2(x)(Ω) is continuous, whenever p1, p2 ∈ C(Ω) with p1(x) ≥ p2(x) > 1 for all x ∈ Ω.
In addition, [2, Theorem 1.3] relates ‖ · ‖Lp(x)(Ω) to ρp(·) as follows.

Theorem 2. Let u ∈ Lp(x)(Ω). Then, the following relations hold:

(i) ‖u‖Lp(x)(Ω) < 1 (= 1, > 1)⇔ ρp(u) < 1 (= 1, > 1);

(ii) if ‖u‖Lp(x)(Ω) > 1, then ‖u‖p
−

Lp(x)(Ω)
≤ ρp(u) ≤ ‖u‖p

+

Lp(x)(Ω)
;

(iii) if ‖u‖Lp(x)(Ω) < 1, then ‖u‖p
+

Lp(x)(Ω)
≤ ρp(u) ≤ ‖u‖p

−

Lp(x)(Ω)
.

Remark 1. By manipulating the information in Theorem 2 we get easily the bound
inequalities:

(5) ‖u‖p
+

Lp(x)(Ω)
+ 1 ≥ ρp(x)(u) ≥ ‖u‖p

−

Lp(x)(Ω)
− 1.

Moreover, we can obtain other results by routine calculations. Indeed (5) gives us[
‖u‖p

+

Lp(x)(Ω)
+ 1
]

+ 1 ≥
∫

Ω

(|u|p(x)−1)
p(x)
p(x)−1dx+ 1 ≥ ‖|u|p(x)−1‖(p′)−

Lp
′(x)(Ω)

,

where we used the fact that u ∈ Lp(x)(Ω) implies |u|p(x)−1 ∈ Lp′(x)(Ω). It follows that

(6) ‖|u|p(x)−1‖Lp′(x)(Ω) ≤ 2 + ‖u‖p
+

Lp(x)(Ω)
.

Following a similar argument, one can derive the following inequality

(7) ‖|∇u|
p(x)

α′(x)‖Lα′(x)(Ω) ≤ 2 + ‖|∇u|‖p
+

Lp(x)(Ω)
, α ∈ C(Ω) with α(x) > 1 for all x ∈ Ω.

To conclude this section, we introduce the precise hypotheses on the reaction term.
We start with the usual Carathéodory assumptions. For a Carathéodory function f :
Ω× R× RN → R we mean a function such that

• for all (z, y) ∈ R× RN , x→ f(x, z, y) is measurable;
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• for almost all x ∈ Ω, (z, y)→ f(x, z, y) is continuous,

and hence it is jointly measurable (see Hu-Papageorgiou [12], p. 142).
Now, we have to introduce the growth bounds on this reaction. But before we make

the assumption about the exponent p.

H(p): There exists ξ0 ∈ RN \ {0} such that for all x ∈ Ω the function px : Ωx → R
defined by px(z) = p(x+ zξ0) is monotone, where Ωx := {z ∈ R : x+ zξ0 ∈ Ω}.
H(p) is significant because, according to [3, Theorem 3.3], leads to the Rayleigh

quotient

(8) λ̂ := inf
u∈W 1,p(x)

0 (Ω),u6=0

∫
Ω
|∇u|p(x)dx∫

Ω
|u|p(x)dx

> 0.

For a different condition on the exponent function p leading again to (8) see also [3,
Theorem 3.4]. Now, we have:

H(f): f : Ω× R× RN → R is a Carathéodory function such that

(i) there exist σ ∈ Lα′(x)(Ω), 1 < α(x) < p∗(x) :=

{
Np(x)
N−p(x)

if p(x) < N,

+∞ otherwise,
and c > 0

such that

|f(x, z, y)| ≤ c(σ(x) + |z|α(x)−1 + |y|
p(x)

α′(x) ) for a.a. x ∈ Ω, all z ∈ R, all y ∈ RN ;

(ii) there exist a0 ∈ L1(Ω) and b1, b2 ≥ 0 such that

|f(x, z, y)z| ≤ a0(x) + b1|z|p(x) + b2|y|p(x) for a.a. x ∈ Ω, all z ∈ R, all y ∈ RN .

3. Main results

We recall that u ∈ W 1,p(x)
0 (Ω) is a weak solution to (1) if

(9) 〈−∆K
p(x)u, h〉 =

∫
Ω

f(x, u(x),∇u(x))h(x)dx for all h ∈ W 1,p(x)
0 (Ω).

We note that if u ∈ W 1,p(x)
0 (Ω) is a weak solution to (1), then there exists {un}n∈N ⊆

W
1,p(x)
0 (Ω) such that

(i) un
w−→ u in W

1,p(x)
0 (Ω), as n→ +∞;

(ii) −∆K
p un − f(·, un(·),∇un(·)) w−→ 0 in W−1,p′(x)(Ω), as n→ +∞;

(iii) limn→+∞〈−∆K
p un, un − u〉 = 0.

However, such a kind of solution (that is, u ∈ W 1,p(x)
0 (Ω) satisfying (i), (ii), (iii) above),

is known as “strong generalized solution” to problem (1), according to the terminology
of Motreanu [17] (notion given for the operator −∆p + ∆q). Consequently, the set of
weaker solutions to (1) is a subset of the strong generalized solutions to (1) (it follows

choosing {un}n∈N ⊆ W
1,p(x)
0 (Ω) with un := u for all n ∈ N).

Changing the point of view in this reasoning (that is, starting from the notion of
strong generalized solution), it is a natural question to ask when a strong generalized
solution to (1) leads to the classical notion of weak solution.

We answer to this question in the positive, presenting the following condition:

(10)

∫
Ω

1

p(x)
|∇un|p(x)dx 6→ ap

bp
as n→ +∞, {un}n∈N ⊆ W

1,p(x)
0 (Ω).
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We model this condition, having in mind the classical (S)+-property of operators as
the p(x)-Laplacian one. Indeed ∆p(x) has the (S)+-property, which says us that

un
w−→ u in W

1,p(x)
0 (Ω) and lim sup

n→+∞
〈−∆pun, un − u〉 ≤ 0 ⇒ un → u in W

1,p(x)
0 (Ω).

It is clear that, at least for a subsequence,

lim
n→+∞

〈−∆K
p un, un − u〉 = 0 and (10) ⇒ lim

n→+∞
〈−∆pun, un − u〉 = 0,

and hence we retrieve the (S)+-property of the p(x)-Laplacian operator, provided that

un
w−→ u in W

1,p(x)
0 (Ω), as n → +∞. This argument will be used later in the proof of

Theorem 4.
Now, we are ready to establish the existence of strong generalized solution to problem

(1) under hypotheses H(p) and H(f). We develop a topological approach based on a

Galerkin basis of W
1,p(x)
0 (Ω) and an appropriate definition of Nemitsky map correspond-

ing to the Carathéodory function f . For the reader’s convenience, we prefer to repeat
in the form of a definition, the above suggested notion of strong generalized solution.

Definition 1. We say that u ∈ W 1,p(x)
0 (Ω) is a strong generalized solution to (1), when-

ever we can find a sequence {un}n∈N ⊆ W
1,p(x)
0 (Ω) satisfying the following convergence

statements:

(i) un
w−→ u in W

1,p(x)
0 (Ω), as n→ +∞;

(ii) −∆K
p un − f(·, un(·),∇un(·)) w−→ 0 in W−1,p′(x)(Ω), as n→ +∞;

(iii) limn→+∞〈−∆K
p un, un − u〉 = 0.

The following Proposition 3 provides an useful growth estimate, related to the reaction
term f(·, u(·),∇u(·)). The calculations follow by an application of Hölder inequality.

Proposition 3. If hypothesis H(f)(i) holds, then for all u, h ∈ W 1,p(x)
0 (Ω) we have the

following estimate:∣∣∣∣∫
Ω

f(x, u,∇u)hdx

∣∣∣∣ ≤ 2c‖h‖Lα(x)(Ω)

[
‖σ‖Lα′(x)(Ω) + ‖u‖α+

Lα(x)(Ω) + ‖∇u‖p
+

Lp(x)(Ω)
+ 4
]
,

for some c > 0.

Proof. Using H(f)(i) we get∣∣∣∣∫
Ω

f(x, u,∇u)hdx

∣∣∣∣ ≤ c

∫
Ω

[|σ(x)|+ |u|α(x)−1 + |∇u|
p(x)

α′(x) ] |h|dx

≤ 2c‖h‖Lα(x)(Ω)

[
‖σ‖Lα′(x)(Ω) +

∥∥|u|α(x)−1
∥∥
Lα
′(x) +

∥∥∥|∇u| p(x)α′(x)

∥∥∥
Lα
′(x)(Ω)

]
(by Hölder inequality)

≤ 2c‖h‖Lα(x)(Ω)

[
‖σ‖Lα′(x)(Ω) + ‖u‖α+

Lα(x)(Ω) + ‖∇u‖p
+

Lp(x)(Ω)
+ 4
]

(11)

(by (6) and (7)),

for all u, h ∈ W 1,p(x)
0 (Ω) and some c > 0. �

Now, by N∗f : W
1,p(x)
0 (Ω) ⊂ Lα(x)(Ω) → Lα

′(x)(Ω) we mean the Nemitsky map corre-
sponding to the Carathéodory function f , that is,

N∗f (u)(·) = f(·, u(·),∇u(·)) for all u ∈ W 1,p(x)
0 (Ω).
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By H(f) (i) (see also Galewski [8]), we get that N∗f (·) is bounded and continuous. Then,

we consider the operator Nf : W
1,p(x)
0 (Ω)→ W−1,p′(x)(Ω) defined by

Nf = i∗ ◦N∗f ,

where i∗ : Lα
′(x)(Ω)→ W−1,p′(x)(Ω) is a continuous embedding (see Lemma 1). It follows

that Nf : W
1,p(x)
0 (Ω)→ W−1,p′(x)(Ω) is bounded and continuous.

On the other side (recall Proposition 3), we have the bound

‖Nf (h)‖W−1,p′(x)(Ω) ≤ 2c
[
‖σ‖Lα′(x)(Ω) + ‖h‖α+

Lα(x)(Ω) + ‖∇h‖p
+

Lp(x)(Ω)
+ 4
]
,

for all h ∈ W 1,p(x)
0 (Ω), some c > 0.

Recalling that W
1,p(x)
0 (Ω) is a separable Banach space, then we can find a Galerkin

basis of W
1,p(x)
0 (Ω), that is, a sequence {Xn}n∈N of vector subspaces of W

1,p(x)
0 (Ω) with

• dim (Xn) < +∞ for all n ∈ N;
• Xn ⊂ Xn+1 for all n ∈ N;

• ∪∞n=1Xn = W
1,p(x)
0 (Ω).

Proposition 4. Let {Xn}n∈N be a Galerkin basis of W
1,p(x)
0 (Ω). If hypotheses H(p) and

H(f) hold, then for all n ∈ N we can find un ∈ Xn with

(12) 〈−∆K
p un, h〉 =

∫
Ω

f(x, un(x),∇un(x))h(x)dx for all h ∈ Xn.

Proof. Fixed n ∈ N, let Vn : Xn → X∗n be the operator defined by

〈Vn(u), h〉 = 〈−∆K
p u, h〉 −

∫
Ω

f(x, u(x),∇u(x))h(x)dx for all u, h ∈ Xn.

Now, H(f)(ii) implies that

〈−Vn(h), h〉 =

(
bp

∫
Ω

1

p(x)
|∇h|p(x)dx− ap

)∫
Ω

|∇h|p(x)dx+

∫
Ω

f(x, h,∇h)hdx

≥
(
bp

∫
Ω

1

p(x)
|∇h|p(x)dx− ap

)∫
Ω

|∇h|p(x)dx−
∫

Ω

|f(x, h,∇h)h|dx

≥ bp
p+

(∫
Ω

|∇h|p(x)dx

)2

− ap
∫

Ω

|∇h|p(x)dx−
∫

Ω

|a0(x)|dx

− b1

∫
Ω

|h|p(x)dx− b2

∫
Ω

|∇h|p(x)dx (by H(f)(ii))

≥ bp
p+
ρ2
p(∇h)− apρp(∇h)− b1λ̂

−1ρp(∇h)− b2ρp(∇h)− ‖a0‖L1(Ω)

=
bp
p+
ρ2
p(∇h)− (ap + b1λ̂

−1 + b2)ρp(∇h)− ‖a0‖L1(Ω),

⇒ 〈−Vn(h), h〉 ≥ bp
p+
ρ2
p(∇h)− (ap + b1λ̂

−1 + b2)ρp(∇h)− ‖a0‖L1(Ω)

for all h ∈ Xn.

If ρp(∇h) > 1, then

〈−Vn(h), h〉 ≥ bp
p+
ρ2
p(∇h)− (ap + b1λ̂

−1 + b2 + ‖a0‖L1(Ω))ρp(∇h)
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=

[
bp
p+
ρp(∇h)− (ap + b1λ̂

−1 + b2 + ‖a0‖L1(Ω))

]
ρp(∇h),

⇒ 〈−Vn(h), h〉 ≥ 0 if ρp(∇h) ≥ p+

bp
(ap + b1λ̂

−1 + b2 + ‖a0‖L1(Ω)).

Fixed R = max

{[
p+

bp
(ap + b1λ̂

−1 + b2 + ‖a0‖L1(Ω))
]1/p−

, 1

}
, then for all h ∈ Xn such

that ‖h‖ = R we get

〈−Vn(h), h〉 ≥ 0 (recall that ‖h‖ = ‖∇h‖Lp(x)(Ω) ≤ ρ
1
p−
p (∇h)).

Next, by Lemma 1 we deduce that the equation −Vn(u) = 0 (or equivalently, Vn(u) =
0) admits a solution un ∈ Xn, and hence (12) holds true. �

Remark 2. From (5) we see that S ⊆ W
1,p(x)
0 (Ω) is bounded if there exists a constant

C > 0 such that ρp(∇u) ≤ C for all u ∈ S.

Let {un}n∈N ⊂ ∪∞n=1Xn be the sequence originated in the proof of Proposition 4.
Then, the following proposition establishes the boundedness of such a sequence in

W
1,p(x)
0 (Ω).

Proposition 5. If hypotheses H(p) and H(f) hold, then {un}n∈N ⊂ ∪∞n=1Xn is bounded

in W
1,p(x)
0 (Ω).

Proof. We prove that

(13) ρp(∇un) ≤ max

{
p+

bp
(ap + b1λ̂

−1 + b2 + ‖a0‖L1(Ω)), 1

}
for all n ∈ N.

If ρp(∇un) ≤ 1 for all n ∈ N, by Remark 2 the sequence {un}n∈N is bounded in

W
1,p(x)
0 (Ω). So, we assume that there is some n ∈ N such that ρp(∇un) > 1. From (12)

for h = un we have

bp
p+

(∫
Ω

|∇un|p(x)dx

)2

≤ ap

∫
Ω

|∇un|p(x)dx−
∫

Ω

f(x, un,∇un)undx

≤ apρp(∇un) +

∫
Ω

|f(x, un,∇un)un|dx

≤ apρp(∇un) +

∫
Ω

[|a0(x)|+ b1|un|p(x) + b2|∇un|p(x)]dx (by H(f)(ii))

≤ (ap + b1λ̂
−1 + b2)ρp(∇un) + ‖a0‖L1(Ω) (by (8)),

⇒ bp
p+
ρ2
p(∇un) ≤ (ap + b1λ̂

−1 + b2 + ‖a0‖L1(Ω))ρp(∇un) (recall ρp(∇un) > 1),

⇒ bp
p+
ρp(∇un) ≤ ap + b1λ̂

−1 + b2 + ‖a0‖L1(Ω),

⇒ ρp(∇un) ≤ p+

bp
(ap + b1λ̂

−1 + b2 + ‖a0‖L1(Ω)) (and hence (13) holds),

⇒ {un}n∈N ⊂ ∪∞n=1Xn is bounded in W
1,p(x)
0 (Ω).

�

Consequently, we establish the following existence result.



VARIABLE EXPONENT p(x)-KIRCHHOFF TYPE PROBLEM WITH CONVECTION 9

Theorem 3. If hypotheses H(p) and H(f) hold, then problem (1) admits a strong

generalized solution u ∈ W 1,p(x)
0 (Ω).

Proof. From Proposition 5, we know that {un}n∈N ⊂ ∪∞n=1Xn is bounded in W
1,p(x)
0 (Ω).

Since W
1,p(x)
0 (Ω) is reflexive, we can assume that

(14) un → u in Lα(x)(Ω) and un
w−→ u in W

1,p(x)
0 (Ω), for some u ∈ W 1,p(x)

0 (Ω).

On the other hand, we already mentioned that the Nemitsky map is bounded and so

{Nf (un)}n∈N is bounded in W−1,p′(x)(Ω).

The boundedness of the operator −∆K
p(x) : W

1,p(x)
0 (Ω)→ W−1,p′(x)(Ω) implies that

{−∆K
p(x)un −Nf (un)}n∈N is bounded in W−1,p′(x)(Ω).

Again, the reflexivity of the space W−1,p′(x)(Ω) leads to the convergence

(15) −∆K
p(x)un −Nf (un)

w−→ κ in W−1,p′(x)(Ω), for some κ ∈ W−1,p′(x)(Ω),

true at least for a relabeled subsequence of {−∆K
p(x)un −Nf (un)}n∈N.

If we choose h ∈ ∪∞n=1Xn, then we can find n(h) ∈ N such that h ∈ Xn(h). So,
Proposition 4 implies that (12) is satisfied for all n ≥ n(h). We can pass to the limit as
n→ +∞ in (12), then we get

〈κ, h〉 = 0 for all h ∈ ∪∞n=1Xn.

Since ∪∞n=1Xn is dense in W
1,p(x)
0 (Ω) (recall that {Xn}n∈N is a Galerkin basis), then

we conclude that κ = 0. Therefore, by (15) we deduce that

(16) −∆K
p(x)un −Nf (un)

w−→ 0 in W−1,p′(x)(Ω).

Next, we choose h = un in (12) and have

(17) ap

∫
Ω

|∇un|p(x)dx = bp

(∫
Ω

|∇un|p(x)dx

)2

+

∫
Ω

f(x, un,∇un)undx for all n ∈ N.

The convergence in (16) gives us

〈−∆K
p(x)un −Nf (un), u〉 → 0 as n→ +∞,

⇒ lim
n→+∞

〈−∆K
p(x)un −Nf (un), un − u〉 = 0 (by (17)).(18)

From Proposition 3 (putting un in place of u), choosing the test function h = (un −
u) ∈ W 1,p(x)

0 (Ω) we get∣∣∣∣∫
Ω

f(x, un,∇un)(un − u)dx

∣∣∣∣
≤ 2c‖un − u‖Lα(x)(Ω)

[
‖σ‖Lα′(x)(Ω) + ‖un‖α

+

Lα(x)(Ω) + ‖∇un‖p
+

Lp(x)(Ω) + 4
]
,(19)

for some c > 0, all n ∈ N.

Now, we know that {un}n∈N is bounded in W
1,p(x)
0 (Ω) and hence in Lα(x)(Ω). Also,

{|∇un|}n∈N is bounded in Lp(x)(Ω). Consequently, from (19) we deduce that

(20)

∣∣∣∣∫
Ω

f(x, un,∇un)(un − u)dx

∣∣∣∣ ≤M‖un − u‖Lα(x)(Ω) for some M > 0.
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It follows that

lim
n→+∞

∫
Ω

f(x, un,∇un)(un − u)dx = 0 (by (20)),

⇒ lim
n→+∞

〈−∆K
p(x)un, un − u〉 = 0 (recall (18)).(21)

Clearly (14), (16) and (21) mean that u ∈ W 1,p(x)
0 (Ω) is a strong generalized solution

to problem (1). �

We conclude this section, turning to the initial question asking when a strong gen-
eralized solution to (1) leads to a weak solution to (1). We establish the following
theorem.

Theorem 4. Let u ∈ W 1,p(x)
0 (Ω) be a strong generalized solution to problem (1), asso-

ciated to the sequence {un}n∈N ⊆ W
1,p(x)
0 (Ω) satisfying (10). If hypotheses H(f) holds,

then u ∈ W 1,p(x)
0 (Ω) is a weak solution to problem (1).

Proof. Since the sequence {un}n∈N ⊆ W
1,p(x)
0 (Ω) is bounded, at least for a relabeled

subsequence we may assume that∫
Ω

1

p(x)
|∇un|p(x)dx 6= ap

bp
for all n ∈ N

and ∫
Ω

1

p(x)
|∇un|p(x)dx→ t0 6=

ap
bp

as n→ +∞, for some t0 > 0 (by (10)),

⇒ ap − bp
∫

Ω

1

p(x)
|∇un|p(x)dx→ ap − bpt0 6= 0.

Therefore, we can find δ > 0 such that∣∣∣∣ap − bp ∫
Ω

1

p(x)
|∇un|p(x)dx

∣∣∣∣ ≥ δ > 0 for all n ∈ N.(22)

Considering that the sequence
{
ap − bp

∫
Ω

1
p(x)
|∇un|p(x)dx

}
is bounded. Since u ∈

W
1,p(x)
0 (Ω) is a strong generalized solution to problem (1) we get

lim
n→+∞

〈−∆K
p(x)un, un − u〉 = 0,

which means

lim
n→+∞

[(
ap − bp

∫
Ω

1

p(x)
|∇un|p(x)dx

)
〈−∆p(x)un, un − u〉

]
= 0,

⇒ lim
n→+∞

〈−∆p(x)un, un − u〉 = 0 (by (22)),

⇒ un → u in W
1,p(x)
0 (Ω) (since −∆p(x) has the (S)+-property).

Using again the definition of strong generalized solution, we deduce that

−∆K
p(x)un − f(·, un(·),∇un(·)) w−→ 0 in W−1,p′(x)(Ω),

⇒ −∆K
p(x)u− f(·, u(·),∇u(·)) = 0,

⇒ u ∈ W 1,p(x)
0 (Ω) is a weak solution to problem (1) (recall (9)).

�

calogerovetro
Evidenziato
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4. Complementary results

We show that our results remain true under a different hypothesis on the variable
exponent p. Precisely, we substitute hypothesis H(p) with the following one:

H ′(p): p ∈ C(Ω) is finite with p+ < 2p−.

We point out that a similar hypothesis can be found in Hamdani-Harrabi-Mtiri-
Repovš [11], see (1.4) of Theorem 1.1 (in absence of convection).

The change of H(p) by H ′(p) requires only slight adaptations in the proofs of Propo-
sitions 4 and 5. For reader convenience, we give the precise calculations in the following
two propositions.

Proposition 6. Let {Xn}n∈N be a Galerkin basis of W
1,p(x)
0 (Ω). If hypotheses H ′(p)

and H(f) hold, then for all n ∈ N we can find un ∈ Xn with

(23) 〈−∆K
p un, h〉 =

∫
Ω

f(x, un(x),∇un(x))h(x)dx for all h ∈ Xn.

Proof. As in the proof of Proposition 4, fixed n ∈ N, we consider the operator Vn :
Xn → X∗n defined by

〈Vn(u), h〉 = 〈−∆K
p u, h〉 −

∫
Ω

f(x, u(x),∇u(x))h(x)dx for all u, h ∈ Xn.

Using again H(f)(ii), we deduce that

〈−Vn(h), h〉 ≥ bp
p+

(∫
Ω

|∇h|p(x)dx

)2

−(ap+b2)

∫
Ω

|∇h|p(x)dx−b1

∫
Ω

|h|p(x)dx−‖a0‖L1(Ω)

for all h ∈ Xn.
Now, if ‖h‖ = ‖∇h‖Lp(x)(Ω) > 1 we get

〈−Vn(h), h〉 ≥ bp
p+
‖h‖2p− − (ap + b2)‖h‖p+ − b1 max{‖h‖p

+

Lp(x)(Ω)
, ‖h‖p

−

Lp(x)(Ω)
} − ‖a0‖L1(Ω)

≥ bp
p+
‖h‖2p− − (ap + b2 + b1Ch + ‖a0‖L1(Ω))‖h‖p

+

(some Ch = Ch(p
−, p+, c1) > 0, where c1 is the constant in (3))

= ‖h‖p+
[
bp
p+
‖h‖2p−−p+ − (ap + b2 + b1Ch + ‖a0‖L1(Ω))

]
,

⇒ 〈−Vn(h), h〉 ≥ 0 if ‖h‖ ≥
[
p+

bp
(ap + b2 + b1Ch + ‖a0‖L1(Ω))

]1/(2p−−p+)

.

Fixed R = max

{[
p+

bp
(ap + b2 + b1Ch + ‖a0‖L1(Ω))

]1/(2p−−p+)

, 1

}
, then for all h ∈ Xn

such that ‖h‖ = R we get

〈−Vn(h), h〉 ≥ 0.

Next, by Lemma 1 we deduce that the equation −Vn(u) = 0 (or equivalently, Vn(u) =
0) admits a solution un ∈ Xn, and hence (23) holds true. �

Proposition 7. If hypotheses H ′(p) and H(f) hold, then {un}n∈N ⊂ ∪∞n=1Xn is bounded

in W
1,p(x)
0 (Ω).
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Proof. If ‖∇un‖Lp(x)(Ω) ≤ 1 for all n ∈ N, then the sequence {un}n∈N is bounded in

W
1,p(x)
0 (Ω). So, we assume that there is some n ∈ N such that ‖∇un‖Lp(x)(Ω) > 1. From

(23) for h = un we have

bp
p+
‖∇un‖2p−

Lp(x)(Ω)
≤ bp
p+

(∫
Ω

|∇un|p(x)dx

)2

≤ ap

∫
Ω

|∇un|p(x)dx−
∫

Ω

f(x, un,∇un)undx,

⇒ bp
p+
‖∇un‖2p−

Lp(x)(Ω)
≤ (ap + b1Ch + b2)‖∇un‖p

+

Lp(x)(Ω)
+ ‖a0‖L1(Ω),

⇒ ‖∇un‖2p−−p+
Lp(x)(Ω)

≤ p+

bp
(ap + b1Ch + b2 + ‖a0‖L1(Ω)),

⇒ ‖∇un‖Lp(x)(Ω) ≤ max

{[
p+

bp
(ap + b1Ch + b2 + ‖a0‖L1(Ω))

]1/(2p−−p+)

, 1

}
,

⇒ {un}n∈N ⊂ ∪∞n=1Xn is bounded in W
1,p(x)
0 (Ω).

�

Consequently, we have the following counterpart of Theorem 3.

Theorem 5. If hypotheses H ′(p) and H(f) hold, then problem (1) admits a strong

generalized solution u ∈ W 1,p(x)
0 (Ω).

5. Positive Kirchhoff term

As already mentioned in the Introduction, usually in the literature the Kirchhoff term
in p(x)-Laplacian type equations (and others) satisfies a bound condition (positivity
condition) of the form

K̃(p, u) ≥ k0 > 0 for all u ∈ W 1,p(x)
0 (Ω),

equivalently this changes (2) as follows

(24) K̃(p, u) = ap + bp

∫
Ω

1

p(x)
|∇u|p(x)dx, for some ap, bp > 0.

In respect of (24), we can complement our previous results, discussing the existence
and uniqueness of weak solutions to the problem

(25) −∆K̃
p(x)u(x) = f(x, u(x),∇u(x)) in Ω, u

∣∣
∂Ω

= 0.

Recall that u ∈ W 1,p(x)
0 (Ω) is a weak solution to (25) if

〈−∆K̃
p(x)u, h〉 =

∫
Ω

f(x, u(x),∇u(x))h(x)dx for all h ∈ W 1,p(x)
0 (Ω).

To start the preliminary work, we collect some notions about the theory of operators
of monotone type.

For convenience, we consider the operator −∆K̃
p(x) : W

1,p(x)
0 (Ω) → W−1,p′(x)(Ω) =

W 1,p(x)(Ω)∗ defined by

〈−∆K
p(x)u, h〉 = K̃(p, u)〈−∆p(x)u, h〉
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= K̃(p, u)

∫
Ω

|∇u|p(x)−2(∇u,∇h)RNdx for all u, h ∈ W 1,p(x)
0 (Ω).

This operator possesses some features of regularity as consequence of the properties

of the operator −∆p(x) : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω). Recall the following result of

Fan-Zhang.

Proposition 8. [4, Theorem 3.1 (i)-(ii)] The operator −∆p(x)(·) is continuous, bounded,
strictly monotone convex and of type (S)+.

From the previous proposition we deduce that the operator −∆K̃
p(x) : W

1,p(x)
0 (Ω) →

W−1,p′(x)(Ω) is continuous, bounded and of type (S)+.

Using again the Nemitsky map Nf : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω), we consider the

operator V : W
1,p(x)
0 (Ω)→ W−1,p′(x)(Ω) defined by

V (u) = −∆K̃
p(x)u−Nf (u) for all u ∈ W 1,p(x)

0 (Ω).

By definition, V (·) is a bounded and continuous operator. Now, we prove that V is
surjective. To this aim we proceed as follows: first we show that V is pseudomonotone,
then we show that V is strongly coercive. Indeed, referring to the book of Gasiński-
Papageorgiou [9], (p. 336), we recall the following proposition.

Proposition 9. If V : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) is pseudomonotone and strongly

coercive (that is, lim‖u‖→+∞
〈V (u),u〉
‖u‖ = +∞), then V is surjective (that is, R(V ) =

W−1,p′(x)(Ω)).

About the pseudomonotonicity, we get it as a byproduct of generalized pseudomono-

tonicity (that is, V : W
1,p(x)
0 (Ω)→ W−1,p′(x)(Ω) has the following property: “if un

w−→ u

in W
1,p(x)
0 for some u ∈ W

1,p(x)
0 , and V (un)

w−→ u∗ in W−1,p′(x)(Ω) for some u∗ ∈
W−1,p′(x)(Ω), and lim supn→+∞〈V (un), un − u〉 ≤ 0, then u∗ = V (u) and 〈V (un), un〉 →
〈V (u), u〉”), see also [9, Definition 3.2.45]. Indeed, from [9, Proposition 3.2.49] we de-
duce the following result.

Proposition 10. If V : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) is a bounded generalized pseu-

domonotone operator, then V is also a pseudomonotone operator.

We establish the following existence theorem.

Theorem 6. If hypotheses H(p) and H(f) hold, then problem (25) admits at least a
weak solution.

Proof. We show that the operator V (·) = −∆K̃
p(x)(·) −Nf (·) is pseudomonotone. Since

V (·) is well-defined and bounded, it only takes to prove that V (·) is generalized pseu-

domonotone (recall the statement of [9, Proposition 3.2.49]). We assume that un
w−→ u

in W
1,p(x)
0 (Ω), V (un)

w−→ u∗ in W−1,p′(x)(Ω) and

(26) lim sup
n→+∞

〈V (un), un − u〉 ≤ 0.

From (26) we get

(27) lim sup
n→+∞

[〈−∆K̃
p(x)un, un − u〉 −

∫
Ω

f(x, un,∇un)(un − u)dx] ≤ 0.
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From (11) putting un in place of u and choosing h = un − u ∈ W
1,p(x)
0 (Ω), the

boundedness of {un}n∈N in W
1,p(x)
0 (Ω) and since un → u in Lα(x)(Ω), we have∫

Ω

f(x, un,∇un)(un − u)dx→ 0 as n→ +∞.

Consequently, (27) gives us

lim sup
n→+∞

〈−∆K̃
p(x)un, un − u〉 ≤ 0,

⇒ un → u in W
1,p(x)
0 (Ω) (since −∆K̃

p(x) has the (S)+-property).(28)

By (28) and the continuity of V , we deduce that u∗ = V (u) and 〈V (un), un〉 → 〈V (u), u〉,
and hence V (·) is generalized pseudomonotone, thus pseudomonotone.

Next step is to show that V (·) is strongly coercive too. To this aim, we involve
hypothesis H(f)(ii) to derive the following inequalities

〈V (u), u〉 =

(
ap + bp

∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)dx−
∫

Ω

f(x, u,∇u)udx

≥ bp
p+

(∫
Ω

|∇u|p(x)dx

)2

+ ap

∫
Ω

|∇u|p(x)dx−
∫

Ω

f(x, u,∇u)udx

≥ bp
p+
ρ2
p(∇u) + (ap − b1λ̂

−1 − b2)ρp(∇u)−
∫

Ω

|a0(x)|dx

(by H(f)(ii) and (8))

=

[
bp
p+
ρp(∇u) + ap − b1λ̂

−1 − b2

]
ρp(∇u)− ‖a0‖L1(Ω),

⇒ 〈V (u), u〉 ≥
[
bp
p+
‖u‖p− − 1 + ap − b1λ̂

−1 − b2

]
(‖u‖p− − 1)− ‖a0‖L1(Ω) (by (5)).

Since p− > 1, then V (·) is strongly coercive.
Proposition 9 says that a pseudomonotone strongly coercive operator is a surjection.

Thus, the equation V (u) = 0 admits a solution û ∈ W 1,p(x)
0 (Ω), which is a weak solution

to Problem 1. �

Changing H(p) by H ′(p) we have the following counterpart of Theorem 5.

Theorem 7. If hypotheses H ′(p) and H(f) hold, then problem (25) admits at least a
weak solution.

Proof. Proceeding as in the proof of Theorem 6, we prove that the operator V (·) =

−∆K̃
p(x)(·)−Nf (·) is pseudomonotone.

Next step is to show that V (·) is strongly coercive too. To this aim, we involve
hypothesis H(f)(ii) and H ′(p) to derive the following inequalities

〈V (u), u〉 =

(
ap + bp

∫
Ω

1

p(x)
|∇u|p(x)dx

)∫
Ω

|∇u|p(x)dx−
∫

Ω

f(x, u,∇u)udx

≥ bp
p+

(∫
Ω

|∇u|p(x)dx

)2

+ (ap − b2)

∫
Ω

|∇u|p(x)dx− b1

∫
Ω

|u|p(x)dx−
∫

Ω

|a0(x)|dx

≥ bp
p+
‖u‖2p− − C‖u‖p+ for some C > 0 if ‖u‖ > 1,
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⇒ V (·) is strongly coercive.

�

Remark 3. Note that for the problem (25), each weak solution is a strong generalized
solution. Clearly, the same holds in the opposite sense.
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new p(x)-Kirchhoff problem, Nonlinear Anal. 190 (2020), 111598.

[12] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I. Theory, Mathematics
and its Applications, vol. 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.

[13] G. Kirchhoff, Mechanik (Teubner, Leipzig, 1883).
[14] J.-L. Lions, On some questions in boundary value problems of mathematical physics, in Contem-

porary developments in continuum mechanics and partial differential equations, North-Holland
Mathematics Studies, Vol. 30, North-Holland, Amsterdam, 1978, pp. 284-346.

[15] Z. Liu and N.S. Papageorgiou, Positive Solutions for Resonant (p, q)-equations with convection,
Adv. Nonlinear Anal. 10 2021, 217–232.

[16] G. Molica Bisci and P.F. Pizzimenti, Sequences of weak solutions for non-local elliptic problems
with Dirichlet boundary condition, Proc. Edinb. Math. Soc. (2) 57 (2014), 779–809.

[17] D. Motreanu, Quasilinear Dirichlet problems with competing operators and convection, Open Math-
ematics 18 (2020), 1510–1517.
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