This paper describes an approach for supporting automatic satire detection through effective deep learning (DL) architecture that has been shown to be useful for addressing sarcasm/irony detection problems. We both trained and tested the system exploiting articles derived from two important satiric blogs, Lercio and IlFattoQuotidiano, and significant Italian newspapers.

Cuzzocrea A., Lo Bosco G., Maiorana M., Pilato G., Schicchi D. (2021). Towards a deep-learning-based methodology for supporting satire detection. In Proceedings - DMSVIVA 2021: 27th International DMS Conference on Visualization and Visual Languages (pp. 92-96). Knowledge Systems Institute Graduate School, KSI Research Inc. [10.18293/DMSVIVA2021-016].

Towards a deep-learning-based methodology for supporting satire detection

Lo Bosco G.;Pilato G.;Schicchi D.
2021-01-01

Abstract

This paper describes an approach for supporting automatic satire detection through effective deep learning (DL) architecture that has been shown to be useful for addressing sarcasm/irony detection problems. We both trained and tested the system exploiting articles derived from two important satiric blogs, Lercio and IlFattoQuotidiano, and significant Italian newspapers.
2021
1891706535
978-189170653-0
Cuzzocrea A., Lo Bosco G., Maiorana M., Pilato G., Schicchi D. (2021). Towards a deep-learning-based methodology for supporting satire detection. In Proceedings - DMSVIVA 2021: 27th International DMS Conference on Visualization and Visual Languages (pp. 92-96). Knowledge Systems Institute Graduate School, KSI Research Inc. [10.18293/DMSVIVA2021-016].
File in questo prodotto:
File Dimensione Formato  
DMSVIVA2021_LOBOSCO.pdf

accesso aperto

Tipologia: Versione Editoriale
Dimensione 115.64 kB
Formato Adobe PDF
115.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/519358
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact