GrailQuest (Gamma-ray Astronomy International Laboratory for Quantum Exploration of Space-Time) is an ambitious astrophysical mission concept that uses a fleet of small satellites whose main objective is to search for a dispersion law for light propagation in vacuo. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that depend on the ratio of the photon energy to the Planck energy. This ratio is as small as 10-23 for photons in the γ- ray band (100 keV). Therefore, to detect this effect, light must propagate over enormous distances and the experiment must have extraordinary sensitivity. Gamma-Ray Bursts, occurring at cosmological distances, could be used to detect this tiny signature of space-time granularity. This can be obtained by coherently combine a huge number of small instruments distributed in space to act as a single detector of unprecedented effective area. This is the first example of high-energy distributed astronomy: a new concept of modular observatory of huge overall collecting area consisting in a fleet of small satellites in low orbits, with sub-microsecond time resolution and wide energy band (keV-MeV). The enormous number of collected photons will allow to effectively search these energy dependent delays. Moreover, GrailQuest will allow to perform temporal triangulation of impulsive events with arc-second positional accuracies: an extraordinary sensitive X-ray/Gamma all-sky monitor crucial for hunting the elusive electromagnetic counterparts of Gravitational Waves, that will play a paramount role in the future of Multi-messenger Astronomy. A pathfinder of GrailQuest is already under development through the HERMES (High Energy Rapid Modular Ensemble of Satellites) project: a fleet of six 3U cube-sats to be launched by the end of 2022.

Burderi L., Di Salvo T., Sanna A., Fiore F., Riggio A., Gambino A.F., et al. (2020). GrailQuest & HERMES: Hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam. In den Herder J-WA, S. Nikzad, K. Nakazawa (a cura di), Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma (pp. 252). SPIE [10.1117/12.2561779].

GrailQuest & HERMES: Hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam

Di Salvo T.;Gambino A. F.;Anitra A.;Barbera M.;Iaria R.;Lo Cicero U.;
2020-01-01

Abstract

GrailQuest (Gamma-ray Astronomy International Laboratory for Quantum Exploration of Space-Time) is an ambitious astrophysical mission concept that uses a fleet of small satellites whose main objective is to search for a dispersion law for light propagation in vacuo. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that depend on the ratio of the photon energy to the Planck energy. This ratio is as small as 10-23 for photons in the γ- ray band (100 keV). Therefore, to detect this effect, light must propagate over enormous distances and the experiment must have extraordinary sensitivity. Gamma-Ray Bursts, occurring at cosmological distances, could be used to detect this tiny signature of space-time granularity. This can be obtained by coherently combine a huge number of small instruments distributed in space to act as a single detector of unprecedented effective area. This is the first example of high-energy distributed astronomy: a new concept of modular observatory of huge overall collecting area consisting in a fleet of small satellites in low orbits, with sub-microsecond time resolution and wide energy band (keV-MeV). The enormous number of collected photons will allow to effectively search these energy dependent delays. Moreover, GrailQuest will allow to perform temporal triangulation of impulsive events with arc-second positional accuracies: an extraordinary sensitive X-ray/Gamma all-sky monitor crucial for hunting the elusive electromagnetic counterparts of Gravitational Waves, that will play a paramount role in the future of Multi-messenger Astronomy. A pathfinder of GrailQuest is already under development through the HERMES (High Energy Rapid Modular Ensemble of Satellites) project: a fleet of six 3U cube-sats to be launched by the end of 2022.
2020
978-151063675-0
Burderi L., Di Salvo T., Sanna A., Fiore F., Riggio A., Gambino A.F., et al. (2020). GrailQuest & HERMES: Hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam. In den Herder J-WA, S. Nikzad, K. Nakazawa (a cura di), Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma (pp. 252). SPIE [10.1117/12.2561779].
File in questo prodotto:
File Dimensione Formato  
2101.07119lowq.pdf

accesso aperto

Descrizione: Pre-print su ArXiv
Tipologia: Pre-print
Dimensione 6.59 MB
Formato Adobe PDF
6.59 MB Adobe PDF Visualizza/Apri
SPIE 2020_Burderi.pdf

Solo gestori archvio

Descrizione: Articolo
Tipologia: Versione Editoriale
Dimensione 7.28 MB
Formato Adobe PDF
7.28 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/518544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 2
social impact