The aim of this paper is to establish the existence of at least two non-zero homoclinic solutions for a nonlinear Laplacian difference equation without using Ambrosetti-Rabinowitz type-conditions. The main tools are mountain pass theorem and Palais-Smale compactness condition involving suitable functionals.

Nastasi A., Tersian S., Vetro C. (2021). Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition. ACTA MATHEMATICA SCIENTIA, 41(3), 712-718 [10.1007/s10473-021-0305-z].

Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition

Nastasi A.;Vetro C.
2021-01-01

Abstract

The aim of this paper is to establish the existence of at least two non-zero homoclinic solutions for a nonlinear Laplacian difference equation without using Ambrosetti-Rabinowitz type-conditions. The main tools are mountain pass theorem and Palais-Smale compactness condition involving suitable functionals.
2021
Nastasi A., Tersian S., Vetro C. (2021). Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition. ACTA MATHEMATICA SCIENTIA, 41(3), 712-718 [10.1007/s10473-021-0305-z].
File in questo prodotto:
File Dimensione Formato  
Nastasi_et_al-2021-Acta_Mathematica_Scientia.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 169.24 kB
Formato Adobe PDF
169.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
10447_511615-pre-print.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 264.97 kB
Formato Adobe PDF
264.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/511615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact