The aim of this paper is to establish the existence of at least two non-zero homoclinic solutions for a nonlinear Laplacian difference equation without using Ambrosetti-Rabinowitz type-conditions. The main tools are mountain pass theorem and Palais-Smale compactness condition involving suitable functionals.
Nastasi A., Tersian S., Vetro C. (2021). Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition. ACTA MATHEMATICA SCIENTIA, 41(3), 712-718 [10.1007/s10473-021-0305-z].
Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition
Nastasi A.;Vetro C.
2021-01-01
Abstract
The aim of this paper is to establish the existence of at least two non-zero homoclinic solutions for a nonlinear Laplacian difference equation without using Ambrosetti-Rabinowitz type-conditions. The main tools are mountain pass theorem and Palais-Smale compactness condition involving suitable functionals.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Nastasi_et_al-2021-Acta_Mathematica_Scientia.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
169.24 kB
Formato
Adobe PDF
|
169.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10447_511615-pre-print.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
264.97 kB
Formato
Adobe PDF
|
264.97 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.