We consider a parametric Dirichlet problem driven by the (p,q)-Laplacian and a reaction which is gradient dependent (convection) and the competing effects of two more terms, one a parametric singular term and a locally defined perturbation. We show that for all small values of the parameter the problem has a positive smooth solution.
Papageorgiou N.S., Vetro C., Vetro F. (2021). A singular (p,q)-equation with convection and a locally defined perturbation. APPLIED MATHEMATICS LETTERS, 118, 1-7 [10.1016/j.aml.2021.107175].
A singular (p,q)-equation with convection and a locally defined perturbation
Vetro C.
;
2021-01-01
Abstract
We consider a parametric Dirichlet problem driven by the (p,q)-Laplacian and a reaction which is gradient dependent (convection) and the competing effects of two more terms, one a parametric singular term and a locally defined perturbation. We show that for all small values of the parameter the problem has a positive smooth solution.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2021_AML_PapageorgiouVetroVetro.pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
738.29 kB
Formato
Adobe PDF
|
738.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10447_511435-post-print.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
329.04 kB
Formato
Adobe PDF
|
329.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.