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Abstract

We consider a parametric Dirichlet problem driven by the (p, q)-Laplacian and a reaction which is gradient
dependent (convection) and the competing effects of two more terms, one a parametric singular term and a
locally defined perturbation. We show that for all small values of the parameter the problem has a positive
smooth solution.
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1. Introduction

In this paper we study the following singular parametric Dirichlet (p, q)-equation with 1 < q < p:

−∆pu(z)−∆qu(z) = λu(z)−η + f(z, u(z)) + c|∇u(z)|p−1 in Ω, u
∣∣∣
∂Ω

= 0, u > 0, λ, c > 0, 0 < η < 1, (Pλ)

where Ω ⊆ RN is a bounded domain with a C2-boundary ∂Ω. For every r ∈ (1,+∞) by ∆r we denote the
r-Laplace differential operator defined by ∆ru = div (|∇u|r−2∇u) for all u ∈ W 1,r

0 (Ω). In (Pλ) we have
the sum of two such operators. So, the differential operator in (Pλ) is not homogeneous. The reaction of5

(Pλ) depends on the gradient of u (convection) and in addition it involves the competing effects of two more
terms. One is a parametric singular term λu−η (λ > 0 being the parameter) and the other is a Carathéodory
perturbation with f(z, ·) only locally (near 0+) defined. The presence of the gradient of u in the reaction
makes (Pλ) nonvariational. So, we follow a topological approach based on truncation techniques and on
the theory of nonlinear operators of monotone type. We show that for all small parameter λ > 0 values,10

the problem has a positive solution. Recently nonlinear singular problems with convection were studied by
Bai-Gasiński-Papageorgiou [2] (Dirichlet problems), and by Papageorgiou-Rădulescu-Repovš [15] (Neumann
problems). In both works the differential operator is the p-Laplacian and the reaction is globally defined. For
other papers dealing with convection double phase problems, we refer to [7, 8, 19, 20]. Parametric problems
without convection can be found in [1, 12, 17], where a variety of mathematical methods are combined in a15

synergic way. Finally, a weighted (p, q)-equation with Robin boundary condition is studied in [13].

2. Preliminaries - Hypotheses

The main spaces in the analysis of (Pλ) are the Sobolev space W 1,p
0 (Ω) and the Banach space C1

0 (Ω) =
{u ∈ C1(Ω) : u

∣∣
∂Ω

= 0}. By ∥ · ∥ we denote the norm of W 1,p
0 (Ω). On account of the Poincaré inequality we
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have ∥u∥ = ∥∇u∥p for all u ∈ W 1,p
0 (Ω). The space C1

0 (Ω) is an ordered Banach space with order (positive)20

cone C+ = {u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty interior given by intC+ = {u ∈

C+ : u(z) > 0 for all z ∈ Ω, ∂u
∂n

∣∣
∂Ω

< 0} with n(·) being the outward unit normal on ∂Ω. For r ∈ (1,+∞)

by Ar : W 1,r
0 (Ω) → W 1,r

0 (Ω)∗ = W−1,r′(Ω) ( 1r + 1
r′ = 1) we denote the nonlinear operator defined by

⟨Ar(u), h⟩ =
∫
Ω
|∇u|r−2(∇u,∇h)RNdz for all u, h ∈W 1,r

0 (Ω). This operator is continuous, strictly monotone

(hence maximal monotone too) and of type (S)+ (i.e., if un
w−→ u inW 1,r

0 (Ω) and lim sup
n→+∞

⟨Ar(un), un−u⟩ ≤ 0,25

then un → u in W 1,r
0 (Ω) (see [6], p. 279)). Given two measurable functions u, v : Ω → R such that

u(z) ≤ v(z) for a.a. z ∈ Ω, we introduce the following two items:

[u, v] = {h ∈W 1,p
0 (Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω},

intC1
0 (Ω)[u, v] = the interior in C1

0 (Ω) of [u, v] ∩ C1
0 (Ω).

If u ∈ W 1,p
0 (Ω), we define u± = max{±u, 0}. We know that u± ∈ W 1,p

0 (Ω), u = u+ − u−, |u| = u+ + u−.

By λ̂1(q) we denote the first eigenvalue of (−∆q,W
1,q
0 (Ω)). We know that λ̂1(q) > 0, it is simple and

isolated and all the eigenfunctions corresponding to it, have fixed sign. By û1(q) we denote the positive,30

Lq-normalized (i.e., ∥û1(q)∥q = 1) eigenfunction corresponding to λ̂1(q) > 0. We know that û1(q) ∈ intC+

and λ̂1(q) is the only eigenvalue with eigenfunctions of fixed sign (see [5], Section 6.2). Now we introduce
our hypotheses on the perturbation f(z, x):
H: f : Ω× [0, b] → R is a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω, and

(i) f(z, b) ≤ −ĉ < 0 for a.a. z ∈ Ω;35

(ii) there ∃ ab ∈ L∞(Ω) such that |f(z, x)| ≤ ab(z) for a.a. z ∈ Ω, all 0 ≤ x ≤ b;

(iii) there ∃ δ ∈ (0, b) and η ∈ L∞(Ω) \ {λ̂1(q)} such that λ̂1(q) ≤ η(z) for a.a. z ∈ Ω, η(z)xq−1 ≤ f(z, x)
for a.a. z ∈ Ω, all 0 ≤ x ≤ δ.

(iv) there ∃ ξ̂b > 0 such that for a.a. z ∈ Ω, the function x→ f(z, x) + ξ̂bx
p−1 is nondecreasing on [0, b].

Remark 1. We can always assume that f(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0. We stress that f(z, ·) is defined40

only locally near zero.

In the next section we deal with an auxiliary Dirichlet problem, the solution of which will help us
overcome the difficulty posed by the singular term.

3. Auxiliary Problem

Hypotheses H (ii), (iii) imply that we can find c1 > 0 such that45

f(z, x) ≥ η(z)xq−1 − c1x
p−1 for a.a. z ∈ Ω, all x ∈ [0, b]. (1)

Based on this unilateral growth condition of f(z, ·) on [0, b], we introduce the Carathéodory function k :
Ω× R → R defined by

k(z, x) =

{
η(z)(x+)q−1 − c1(x

+)p−1 if x ≤ b,

η(z)bq−1 − c1b
p−1 if b < x.

(2)

We consider the following auxiliary Dirichlet problem

−∆pu(z)−∆qu(z) = k(z, u(z)) in Ω, u
∣∣
∂Ω

= 0. (3)

Proposition 1. Problem (3) admits a unique solution u ∈ intC1
0 (Ω)[0, b].
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Proof. Problem (3) is variational. So, let K(z, x) =
∫ x

0
k(z, s)ds and consider the C1-functional ψ :50

W 1,p
0 (Ω) → R defined by ψ(u) = 1

p∥∇u∥
p
p + 1

q∥∇u∥
q
q −

∫
Ω
K(z, u)dz for all u ∈ W 1,p

0 (Ω). It is clear

from (2) that ψ(·) is coercive. Also, using the Sobolev embedding theorem, we see that ψ(·) is sequentially
weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find u ∈W 1,p

0 (Ω) such that

ψ(u) = min
[
ψ(u) : u ∈W 1,p

0 (Ω)
]
. (4)

Recall that û1 = û1(q) ∈ intC+. Let t ∈ (0, 1) small such that tû1(z) ≤ δ for all z ∈ Ω. We have

ψ(tû1) =
tp

p
∥∇û1∥pp −

tq

q

∫
Ω

[η(z)− λ̂1(q)]û
q
1dz +

c1t
p

p
∥û1∥pp.

Note that γ0 =
∫
Ω
[η(z)− λ̂1(q)]ûq1dz > 0. Hence we can write ψ(tû1) ≤ c2t

p− c3tq for some c2, c3 > 0. Since
t ∈ (0, 1) and q < p, choosing t ∈ (0, 1) even smaller if necessary, we have ψ(tû1) < 0, hence ψ(u) < 0 = ψ(0)55

(see (4)) and so u ̸= 0. From (4) we have

ψ′(u) = 0 ⇒ ⟨Ap(u), h⟩+ ⟨Aq(u), h⟩ =
∫
Ω

k(z, u)hdz for all h ∈W 1,p
0 (Ω). (5)

In (5) first we choose h = −u− ∈ W 1,p
0 (Ω) and obtain u ≥ 0, u ̸= 0. Then we use the test function

h = (u− b)+ ∈W 1,p
0 (Ω). We have

⟨Ap(u), (u− b)+⟩+ ⟨Aq(u), (u− b)+⟩ =
∫
Ω

[η(z)bq−1 − c1b
p−1](u− b)+dz (see (2))

≤
∫
Ω

f(z, b)(u− b)+dz ≤ 0, (see (1)),

which implies u ≤ b. So, we have proved that u ∈ [0, b], u ̸= 0. It follows that

−∆pu−∆qu = η(z)uq−1 − c1u
p−1 in Ω, u

∣∣
∂Ω

= 0. (6)

From (6) and the nonlinear regularity theory of [11], we have u ∈ C+ \ {0}. Also from (6) we see that60

∆pu+∆qu ≤ c1u
p−1 in Ω and this, by the nonlinear maximum principle of [18] (pp. 111, 120), implies that

u ∈ [0, b] ∩ intC+. (7)

Let δ ∈ (0, 1) and set uδ = u+ δ. With ξ̂b > 0 as postulated by hypothesis H (iv), we have

−∆puδ −∆quδ + ξ̂bu
p−1
δ ≤ −∆pu−∆qu+ ξ̂bu

p−1 + χ(δ) with χ(δ) → 0+ as δ → 0+

= η(z)uq−1 − c1u
p−1 + ξ̂bu

p−1 + χ(δ)

≤ f(z, u) + ξ̂bu
p−1 + χ(δ) (see (1) and (7))

≤ f(z, b) + ξ̂bb
p−1 + χ(δ) (see (7) and hypothesis H (iv))

≤ −ĉ+ ξ̂bb
p−1 + χ(δ) (see hypothesis H (i))

≤ ξ̂bb
p−1 − ĉ0 for δ ∈ (0, 1) small and some ĉ0 > 0

< −∆pb
p−1 −∆qb

q−1 + ξ̂bb
p−1. (8)

From (8) and [14, Proposition 2.10] we get u(z) < b for all z ∈ Ω and so u ∈ intC1
0 (Ω)[0, b]. To show the

uniqueness of this positive solution u ∈ intC+, we use the functional j : L
1(Ω) → R = R∪{+∞} defined by

j(u) =

{
1
p∥∇u

1/q∥pp + 1
q∥∇u

1/q∥qq if u ≥ 0, u1/q ∈W 1,p
0 (Ω),

+∞ otherwise.
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From Dı́az-Saá [4], we know that j(·) is convex. Suppose that v ∈W 1,p
0 (Ω) is another nontrivial solution of

(3). Again we have v ∈ [0, b] ∩ intC+. On account of [16, Proposition 4.1.22], we have u
v ,

v
u ∈ L∞(Ω). If

dom j = {u ∈ L1(Ω) : j(u) <∞} (the effective domain of j(·)) and h = uq − vq ∈W 1,p
0 (Ω), then for |t| < 165

small, we have uq + th, vq + th ∈ dom j. So, the convex functional j(·) is Gateaux differentiable at uq and at
vq in the direction h. Using the chain rule and the nonlinear Green’s identity (see [16], p. 35), we have

j′(uq)(h) =
1

q

∫
Ω

−∆pu−∆qu

uq−1 hdz =
1

q

∫
Ω

[η(z)− c1u
p−q]hdz,

j′(vq)(h) =
1

q

∫
Ω

−∆pv −∆qv

vq−1 hdz =
1

q

∫
Ω

[η(z)− c1v
p−q]hdz.

The convexity of j(·) implies the monotonicity of j′(·). Hence we have 0 ≤
∫
Ω
c1[v

p−q−up−q](uq−vq)dz ≤ 0,
and so u = v. Therefore u ∈ intC+ is the unique solution of (3).

Since u ∈ intC+, from the proof of the Lemma of Lazer-McKenna [10], we have that u−η ∈ L1(Ω) (since70

0 < η < 1). Also, Lemma 14.16, p. 355, of Gilbarg-Trudinger [9], implies that we can find δ0 > 0 such that,

if Ωδ0 = {z ∈ Ω : d(z, ∂Ω) < δ0}, then d̂(·) = d(·, ∂Ω) ∈ C2(Ωδ0). So, it follows that d̂ ∈ C+ \ {0} and so

using [16, Proposition 4.1.22] (p. 274), we can find c4 > 0 such that d̂ ≤ c4u. Then for all h ∈W 1,p
0 (Ω)∫

Ω

|h|
uη
dz =

∫
Ω

|u|1−η |h|
u
dz ≤ c5

∫
Ω

|h|
u
dz for some c5 > 0

≤ c6

∫
Ω

|h|
d̂
dz for some c6 > 0

≤ c7

∥∥∥∥h
d̂

∥∥∥∥
p

for some c7 > 0

≤ c8 ∥∇h∥p for some c8 > 0 (by Hardy’s inequality, see Brezis [3], p. 313),

⇒ h

uη
∈ L1(Ω) for all h ∈W 1,p

0 (Ω). (9)

4. Positive Solution

In this section using topological tools we prove the existence of a positive solution for problem (Pλ) when75

λ > 0 is small. So, consider the truncation at b function pb : R → R defined by pb(x) = x if x ≤ b and
pb(x) = b if b < x. This is a Lipschitz function. Therefore, if u ∈W 1,p

0 (Ω), we know that u+ ∈W 1,p
0 (Ω) and

then the chain rule for Sobolev functions (see [16], p. 22), says that pb(u
+(·)) ∈W 1,p

0 (Ω) and we have

∇pb(u+) = p′b(u
+)∇u+ =

{
∇u+ if u+(z) ≤ b,

0 if b < u+(z).
(10)

We introduce the Carathéodory function ℓλ : Ω× R → R defined by

ℓλ(z, x) =

{
λu(z)−η + f(z, u(z)) if x ≤ u(z),

λx−η + f(z, pb(x)) if u(z) < x.
(11)

Let Nℓλ denote the Nemitsky operator corresponding to ℓλ, that is, Nℓλ(u)(·) = ℓλ(·, u(·)) for all u ∈80

W 1,p
0 (Ω). On account of (9) we see that Nℓλ(u) ∈ W−1,p′

(Ω) = W 1,p
0 (Ω)∗. Also, from Lemma 2.2.27,

p. 141, of Gasiński-Papageorgiou [5], we have that Lp′
(Ω) ↪→ W−1,p′

(Ω) continuously and densely. Hence
|∇pb(u+(·))|p−1 ∈ Lp′

(Ω) ↪→ W−1,p′
(Ω). So, we can define the operator K0 : W 1,p

0 (Ω) → W−1,p′
(Ω) by

setting K0(u) = Ap(u) +Aq(u)−Nℓλ(u)− c|∇pb(u+)|p−1.

Proposition 2. If hypotheses H hold, then K0(·) is surjective.85
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Proof. First we show that K0(·) is pseudomonotone. Since K0(·) is everywhere defined and bounded,
according to [5, Proposition 3.2.49] (p. 333), it suffices to show that K0(·) is generalized pseudomonotone

(see [5, Definition 3.2.45], p. 330). So, suppose that un
w−→ u in W 1,p

0 (Ω), K(un)
w−→ u∗ in W−1,p′

(Ω) and

lim sup
n→+∞

⟨K0(un), un − u⟩ ≤ 0. (12)

From (12) we have

lim sup
n→+∞

[⟨Ap(un), un−u⟩+⟨Aq(un), un−u⟩−
∫
Ω

ℓλ(z, un)(un−u)dz−
∫
Ω

c|∇pb(u+n )|p−1(un−u)dz] ≤ 0. (13)

Consider the Carathéodory function ℓ̂λ(z, x) defined by90

ℓ̂λ(z, x) =

{
λ

u(z)η if x ≤ b,
λ
xη if b < x.

(14)

We have
∫
Ω
ℓ̂λ(z, un)undz =

∫
{un≤u}

λ(un−u)
uη dz+

∫
{u<un}

λ(un−u)
uη
n

dz (see (14)). Note that on account of (9)

and since un → u in Lp(Ω), we have
∫
{un≤u}

λ(un−u)
uη dz → 0 as n→ +∞. Also we have∣∣∣∣∣

∫
{u<un}

λ(un − u)

uηn
dz

∣∣∣∣∣ ≤
∫
{u<un}

λ|un − u|
uη

dz → 0 as n→ +∞.

Therefore ∫
Ω

ℓ̂λ(z, un)(un − u)dz → 0 ⇒
∫
Ω

ℓλ(z, un)(un − u)dz → 0 (see (11)). (15)

Moreover, since un → u in Lp(Ω), it follows that

c

∫
Ω

|∇pb(u+n )|p−1(un − u)dz → 0. (16)

Returning to (13) and using (15) and (16), we obtain

lim sup
n→+∞

[⟨Ap(un), un − u⟩+ ⟨Aq(un), un − u⟩] ≤ 0,

⇒ lim sup
n→+∞

[⟨Ap(un), un − u⟩+ ⟨Aq(u), un − u⟩] ≤ 0, (since Aq(·) is monotone),

⇒ lim sup
n→+∞

⟨Ap(un), un − u⟩ ≤ 0,

⇒ un → u in W 1,p
0 (Ω) (by the (S)+-property). (17)

From (17) and the continuity of K0, we have u∗ = K0(u) and ⟨K0(un), un⟩ → ⟨K0(u), u⟩, and hence K0(·)
is generalized pseudomonotone, thus pseudomonotone. Also, we have ⟨K0(u), u⟩ ≥ ∥u∥p − c9[∥u∥ + 1] for95

some c9 > 0, which implies that K0(·) is coercive. But a pseudomonotone coercive operator is surjective
(see [5], p. 336). So, we conclude that K0(·) is surjective.

Now we are ready to state and prove our existence theorem.

Theorem 1. If hypotheses H hold, then for all λ > 0 small problem (Pλ) has a positive solution u0 ∈ intC+,
u0(z) < b for all z ∈ Ω.100

Proof. On account of Proposition 2, we can find u0 ∈W 1,p
0 (Ω) such that K0(u0) = 0. We have

Ap(u0) +Aq(u0) = Nℓλ(u0) + c|∇pb(u+)|p−1 in W−1,p′
(Ω). (18)
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On (18) first we act with (u− u0)
+ ∈W 1,p

0 (Ω). We have

⟨Ap(u0), (u− u0)
+⟩+ ⟨Aq(u0), (u− u0)

+⟩ ≥
∫
Ω

[λu−η + f(z, u)](u− u0)
+dz (see (11) and recall c > 0)

≥
∫
Ω

f(z, u)(u− u0)
+dz

≥
∫
Ω

[η(z)uq−1 − c1u
p−1](u− u0)

+dz (see (1))

=⟨Ap(u), (u− u0)
+⟩+ ⟨Aq(u), (u− u0)

+⟩ (see Proposition 1),
(19)

which implies that u ≤ u0. Next on (18) we act with (u0 − b)+ ∈W 1,p
0 (Ω). We have

⟨Ap(u0), (u0 − b)+⟩+ ⟨Aq(u0), (u0 − b)+⟩ =
∫
Ω

[λu−η
0 + f(z, b)](u0 − b)+dz (see (10), (11))

≤
∫
Ω

[λu−η − ĉ ](u0 − b)+dz (see (19) and hypothesis H(i))

≤
∫
Ω

[λb−η − ĉ ](u0 − b)+dz (see (7))

≤ 0 for λ > 0 small,

which implies that u0 ≤ b. So, we have proved that u0 ∈ [u, b]. Then we have

−∆pu0 −∆qu0 = λu−η
0 + f(z, u0) + c|∇u0|p−1 in Ω,

and hence u0 is a positive solution of (Pλ) for λ > 0 small. The nonlinear regularity theory of [11] implies
that u0 ∈ intC+. Suppose that for some z0 ∈ Ω, we have u0(z0) = b. Then ∇u0(z0) = 0 and so we can find105

Ω0 ⊆ Ω open, Ω0 ⊆ Ω with C2-boundary ∂Ω0 such that c|∇u0(z)|p−1 ≤ ε < ĉ for all z ∈ Ω0. We have

−∆pu0(z)−∆qu0(z) + ξ̂bu0(z)
p−1 − λu0(z)

−η = f(z, u0(z)) + ξ̂bu0(z)
p−1 + c|∇u0(z)|p−1

≤ f(z, b) + ξ̂bb
p−1 + ε (see hypothesis H(iv)). (20)

Taking λ > 0 even smaller if necessary, we will have that λb−η + ε < ĉ. Then from (20) and H(i) we have

−∆pu0(z)−∆qu0(z) + ξ̂bu0(z)
p−1 − λu0(z)

−η ≤− ĉ+ ξ̂bb
p−1 ≤ −∆pb−∆qb+ ξ̂bb

p−1 − λb−η in Ω0,

⇒ u0(z) < b for all z ∈ Ω0 (see [14, Proposition 2.10]).

This contradicts the fact that u0(z0) = b, z0 ∈ Ω0. So, we conclude that u0(z) < b for all z ∈ Ω.
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