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Abstract

We consider a parametric Dirichlet problem driven by the (p, ¢)-Laplacian and a reaction which is gradient
dependent (convection) and the competing effects of two more terms, one a parametric singular term and a
locally defined perturbation. We show that for all small values of the parameter the problem has a positive
smooth solution.
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1. Introduction

In this paper we study the following singular parametric Dirichlet (p, ¢)-equation with 1 < ¢ < p:
—Apu(2) — Agu(2) = Mu(2) "+ f(z,u(2)) + c|Vu(z)[P~! in Q, u‘aﬂ =0,u>0,\c>0,0<n<1, (P)

where Q C R¥ is a bounded domain with a C2-boundary 92. For every r € (1,+00) by A, we denote the
r-Laplace differential operator defined by A,u = div (|Vu|"~2Vu) for all u € W, (Q). In we have
the sum of two such operators. So, the differential operator in is not homogeneous. The reaction of
depends on the gradient of u (convection) and in addition it involves the competing effects of two more
terms. One is a parametric singular term Au~" (A > 0 being the parameter) and the other is a Carathéodory
perturbation with f(z,-) only locally (near 0%) defined. The presence of the gradient of w in the reaction
makes nonvariational. So, we follow a topological approach based on truncation techniques and on
the theory of nonlinear operators of monotone type. We show that for all small parameter A > 0 values,
the problem has a positive solution. Recently nonlinear singular problems with convection were studied by
Bai-Gasinski-Papageorgiou [2] (Dirichlet problems), and by Papageorgiou-Radulescu-Repovs [15] (Neumann
problems). In both works the differential operator is the p-Laplacian and the reaction is globally defined. For
other papers dealing with convection double phase problems, we refer to [T, [8, [19] [20]. Parametric problems
without convection can be found in [T}, 12} I7], where a variety of mathematical methods are combined in a
synergic way. Finally, a weighted (p, ¢)-equation with Robin boundary condition is studied in [I3].

2. Preliminaries - Hypotheses

The main spaces in the analysis of are the Sobolev space W, *(2) and the Banach space C&(Q) =
{ue C(Q) : u|aQ = 0}. By ||- || we denote the norm of W, (). On account of the Poincaré inequality we
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have ||ul| = |[Vul, for all u € W, (). The space C4(Q) is an ordered Banach space with order (positive)
cone Cy = {u € CH(Q) : u(z) >0 for all z € Q}. This cone has a nonempty interior given by int C; = {u €
Ci :u(z) >0forall z€Q, %L'm < 0} with n(-) being the outward unit normal on 9. For r € (1,400)
by A, @ Wy (Q) — W, (Q) = WH(Q) (L + L = 1) we denote the nonlinear operator defined by
(Ap(u),h) = [ |[Vul""?(Vu, Vh)gndz for all u,h € W' (€2). This operator is continuous, strictly monotone

(hence maximal monotone too) and of type (S) 4 (i.e., if u, — win Wy (€2) and lim_s;up(AT(un)7 Up—u) <0,
n—-+0oo

then u, — u in Wy (Q) (see [6], p. 279)). Given two measurable functions u,v : © — R such that
u(z) < wv(z) for a.a. z € Q, we introduce the following two items:

[u,v] = {h € Wy (Q) : u(z) < h(z) < v(z) for a.a. z € Q},

int oy g [u, v] = the interior in C3(Q) of [u,v] N CL(Q).
If u € Wy P(2), we define u* = max{#u,0}. We know that u* € Wy (Q), u = ut —u™, |u| = ut +u".
By Ai(g) we denote the first eigenvalue of (—A,, Wy %(Q)). We know that A\;(¢g) > 0, it is simple and
isolated and all the eigenfunctions corresponding to it, have fixed sign. By u1(¢q) we denote the positive,

Li-normalized (i.e., ||u1(q)|lq = 1) eigenfunction corresponding to A1(q) > 0. We know that @y (q) € int Cy

and A;(q) is the only eigenvalue with eigenfunctions of fixed sign (see [5], Section 6.2). Now we introduce
our hypotheses on the perturbation f(z,x):
H: f:Qx][0,b] = R is a Carathéodory function such that f(z,0) =0 for a.a. z € Q, and

(1) f(z,b) < —¢<0foraa. ze
(i) there 3 ap € L(2) such that |f(z,z)| < ap(2) for a.a. z € Q, all 0 <z < by
(iii) there 3 6 € (0,b) and n € L®() \ {A1(q)} such that A (q) < 5(2) for a.a. z € Q, n(z)a91 < f(z,z)
fora.a. z€ Q,all 0 <x <4.
(iv) there 3 & > 0 such that for a.a. z € €2, the function = — f(z,z) + &xP~! is nondecreasing on [0, b].

Remark 1. We can always assume that f(z,2) =0 for a.a. z € Q, all © < 0. We stress that f(z,-) is defined
only locally near zero.

In the next section we deal with an auxiliary Dirichlet problem, the solution of which will help us
overcome the difficulty posed by the singular term.

3. Auxiliary Problem
Hypotheses H (it), (i¢4) imply that we can find ¢; > 0 such that
f(z,2) > n(2)29™ ! — P! for a.a. z € Q, all z € [0, D). (1)

Based on this unilateral growth condition of f(z,:) on [0,b], we introduce the Carathéodory function k :
(2)(at)i7t —cy ()Pt ifz <0,

Q x R — R defined by
n(z
k(z,x) =
(z2) {n(z)bq_l — bt ifb <z

We consider the following auxiliary Dirichlet problem

(2)

—Apu(z) — Aqu(z) = k(z,u(z)) in Q, u|aQ =0. (3)

Proposition 1. Problem admits a unique solution U € intqy ) [0,b].
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Proof. Problem is variational. So, let K(z,x) = [; k(z,s)ds and consider the C'-functional 1 :
WyP(Q) — R defined by ¢(u) = %HVUH? + %HVqu — [o K(z,u)dz for all u € WyP(Q). Tt is clear
from that 1 (-) is coercive. Also, using the Sobolev embedding theorem, we see that ¢ (-) is sequentially
weakly lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find @ € W, () such that

(@) = min [¢(u) Cue WOLP(Q)} . (4)

Recall that 41 = 1y (q) € int Cy. Let ¢t € (0,1) small such that ti;(z) < 6 for all z € Q. We have
N 2 td ~ ~ ct? |
P(tu) = — |V [ — — / (=) = M (@)afdz + ——|[a |},
p q.Ja p

Note that v = [, [n(2) Y (q)]uldz > 0. Hence we can write ¢ (tuy) < cot? — c3t? for some cg, c3 > 0. Since
t € (0,1) and ¢ < p, choosing t € (0,1) even smaller if necessary, we have 1(tu;) < 0, hence ¥ (@) < 0 = (0)
(see () and so @ # 0. From (@) we have

V(@ =0 = mmum+mmmm=4ummw for all h € W2P(Q). (5)

In first we choose h = —u~ € W, P(Q) and obtain @ > 0, @ # 0. Then we use the test function
h=(u—b)t e W, (). We have

(Ap(@), (@ = b)) + (Aq(@), (@ —b) ") = / ()0 = b~ (@ = b)*dz (see @)

Q

< / f(z,0)@—b)Tdz <0, (see (1)),
Q

which implies @ < b. So, we have proved that @ € [0,b], T # 0. It follows that

—Ayu — A =n(2)ult — cyuP ™t in Q, 0. (6)

U‘BQ =

From (6] and the nonlinear regularity theory of [11], we have uw € Cy \ {0}. Also from (6 we see that
Apu+ Agu < cuP~! in Q and this, by the nonlinear maximum principle of [I8] (pp. 111, 120), implies that

u € [0,b)Nint C. (7)
Let 6 € (0,1) and set us =u + . With Eg, > 0 as postulated by hypothesis H (iv), we have

— A5 — ATy + T8 < =AU — Agu+ &P 4 x(6)  with x(8) = 0F as 6 — 0F

= n(2)at™t — w4 &uP Tt + x(6)
< f(z,u) + Gut! + x(0) (see and (7))
< f(z,b) + G+ x(0) (see and hypothesis H (iv))

< T+ + x(0) (see hypothesis H (7))

<GW'—7 forde (0,1) small and some ¢y > 0

< AP AT P (8)
From and [14, Proposition 2.10] we get w(z) < b for all z € Q and so u € int e [0,0]. To show the
uniqueness of this positive solution % € int C'; , we use the functional j : L*(2) — R = RU{+o00} defined by

400 otherwise.
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From Diaz-Sas [], we know that j(-) is convex. Suppose that 7 € Wy?(€) is another nontrivial solution of

[@). Again we have v € [0,b] Nint C;.. On account of [I6, Proposition 4.1.22], we have £, Z € L>(Q). If
domj = {u € LY(Q) : j(u) < co} (the effective domain of j(-)) and h = w9 — 79 € W, "*(2), then for |¢| < 1
small, we have u? 4 th,7? + th € dom j. So, the convex functional j(-) is Gateaux differentiable at w? and at

¢ in the direction h. Using the chain rule and the nonlinear Green’s identity (see [16], p. 35), we have

s = ¢ [ =PRSS Eha: = 2 [ ) - awhds,

q it q
7 (@) (h) = 1/ whdz — 1/[,7(2) — 7Y hdz.
q Ja v qJo

The convexity of j(-) implies the monotonicity of j'(-). Hence we have 0 < [, ¢1[0P~ ¢ —u?~9|(u? —v?)dz < 0,
and so w = v. Therefore u € int C; is the unique solution of . O

Since W € int Cy, from the proof of the Lemma of Lazer-McKenna [10], we have that =" € L*() (since
0 <n<1). Also, Lemma 14.16, p. 355, of Gilbarg-Trudinger [9], implies that we can find dy > 0 such that,
if Q5, = {2z € Q : d(2,09) < §}, then c?() =d(-,09) € C?*(Qs,). So, it follows that deCy \ {0} and so
using [16, Proposition 4.1.22] (p. 274), we can find ¢4 > 0 such that d < cqui. Then for all h € WyP(Q)

h h h
/ L—n'dz — / |ﬂ|1_"‘j|dz < 05/ !dz for some ¢5 > 0
QU Q u Q U

h
< 06/ de for some cg > 0
Qd

< ey for some c7 > 0

=~

p
<cs|[Vh|, for some cs >0 (by Hardy’s inequality, see Brezis [3], p. 313),

h
= —€L(Q) forallhe W, P(Q). (9)

4. Positive Solution

In this section using topological tools we prove the existence of a positive solution for problem when
A > 0 is small. So, consider the truncation at b function p, : R — R defined by pp(x) = « if z < b and
po(x) = bif b < x. This is a Lipschitz function. Therefore, if u € W, (), we know that u™ € W, ?(Q) and
then the chain rule for Sobolev functions (see [I6], p. 22), says that py(u™(-)) € Wy*(€2) and we have

Vut ifut(z) <b
\Y% ) =p,(uh)Vut = -7 10
po(u™) = stV {O i (10)
We introduce the Carathéodory function £y : Q x R — R defined by
=7 _ o<
o) T T TG e <) "
Az™T+ f(z,pp(x))  ifu(z) <=z

Let Ny, denote the Nemitsky operator corresponding to £y, that is, Ny, (u)(-) = €a(-,u(-)) for all u €
WyP(€). On account of ([©) we see that Ny, (u) € WL (Q) = WP(Q)*. Also, from Lemma 2.2.27,
p. 141, of Gasiiiski-Papageorgiou [5], we have that ) Q) = Ww—Le (Q) continuously and densely. Hence
(Vps(ut ()P~ € LP'(Q) < W1 (Q). So, we can define the operator Ko : Wo(€) — W12 (Q) by
setting Ko(u) = A,(u) + Ay(w) — Ne, (w) — ¢|Vpp(uT)[P.

Proposition 2. If hypotheses H hold, then Ky(-) is surjective.
4
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Proof. First we show that Ky(-) is pseudomonotone. Since Ky(-) is everywhere defined and bounded,
according to [5, Proposition 3.2.49] (p. 333), it suffices to show that Ky() is generalized pseudomonotone
(see [B, Definition 3.2.45], p. 330). So, suppose that u, — u in W, ?(Q), K (un) — u* in W=7 (Q) and

lim sup (Ko (un ), un, —u) < 0. (12)

n—-+oo

From we have

limsup[<Ap(un),un—u>+<Aq(un),un—u>—/QKA(z,un)(un—u)dz—/Qc|Vpb(uj;)|p_1(un—u)dz} <0. (13)

n—-+0oo
Consider the Carathéodory function 7 A(z,z) defined by

. Ao ifx<b
KA(Z,"E) _ {u/\(z)n Ir s o0, (14)

n

We have [, Un (2, Uy U dz = f{un <} Alun—u) g, f{ﬂ<u"} )‘(u&i—u) dz (see (T4)). Note that on account of (9)

bRl
and since u, — u in L?(Q), we have f{u <) )‘(ug,fu) dz — 0 as n — +o00. Also we have

/ Ay, n— u) &
{u<un} Un

/ Z)\(z,un)(un —u)dz —-0 = / (2, un) Uy, —u)dz — 0 (see (11))). (15)
Q Q

Moreover, since u, — u in LP(Q), it follows that

"

A, —
g/ udzﬁo as n — +o00.
{u<un}

Therefore

C/Q Voo (u,) P~ (up — u)dz — 0. (16)

Returning to and using and , we obtain

limsup [(Ap(un), un — u) + (Ag(un), un — )] <0,

n—-+oo

= limsup [(Ap(un), un — u) + (Ag(w),un, —u)] <0, (since A4(-) is monotone),

n—-+oo
= limsup(A4,(u,),u, —u) <0,
n—-+oo
= w, = uin Wy P(Q) (by the (S),-property). (17)

From and the continuity of Ky, we have u* = Ky(u) and (Ko(uy), u,) = (Ko(u),u), and hence Ky(-)
is generalized pseudomonotone, thus pseudomonotone. Also, we have (Koy(u),u) > ||ul|? — eof||u|| + 1] for
some cg > 0, which implies that Ky(-) is coercive. But a pseudomonotone coercive operator is surjective
(see [B], p. 336). So, we conclude that Ky(-) is surjective. O

Now we are ready to state and prove our existence theorem.

Theorem 1. If hypotheses H hold, then for all X\ > 0 small problem (Py)) has a positive solution ug € int Cy,
uo(z) < b for all z € QL.

Proof. On account of Proposition [2| we can find uy € W, () such that Ko(ug) = 0. We have

Ap(uo) + Aq(uo) = Ny (uo) + €| Vpp(uh)P~" in W (Q). (18)
S
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On first we act with (@ — ug)™ € W, ?(Q). We have
(Ap(uo), (@ —uo)™) + (Ag(uo), (W —up)™) > / Na™" + f(z,0)] (T — uo) T dz (see and recall ¢ > 0)
Q
> [ sma - w)*ds
Q

2u? ! — ;@ N (@ — uo) Tdz (see
zému )@ — o)™ d (see ()

=(A, (W), (@ —uo)T) + (A4(W), (W — uo)™) (see Proposition [I]),
(19)

which implies that @ < ug. Next on we act with (ug — b)t € WyP(). We have
(Ap(uo), (uo — 0)") + (Ag(uo), (uo — 0)*) :/ g™ + f(2,0))(uo — b)Tdz  (see (10), (LI))
Q
< / Na~" —€](up — b)Tdz (see and hypothesis H(i))
Q

< [0 = el - bt (see @)
< 0Q for A > 0 small,
which implies that uy < b. So, we have proved that uy € [@,b]. Then we have
—Apug — Aqug = Aug " + f(2z,u0) + c|VuoP™! in Q,

and hence ug is a positive solution of (P,)) for A > 0 small. The nonlinear regularity theory of [II] implies
that ug € int C;. Suppose that for some zy € €, we have uo(z9) = b. Then Vug(z9) =0 and so we can find
Qo C Q open, Qp C Q with C2-boundary 9 such that c¢|Vug(2)|P~! < e < ¢ for all z € 5. We have

—Apuo(2) — Aquo(2) + &uo(2)P ™ — Muo(2) ™" = f(2,u0(2)) + &uo(2)P " + ¢[Vug(2) [P~
< f(z,b) + Gl +e (see hypothesis H (iv)). (20)

Taking A > 0 even smaller if necessary, we will have that Ab~" 4+ ¢ < €. Then from and H (i) we have

—Apup(z) — Aquo(z) + Ebuo(z)pfl —Aug(z) "< —¢c+ Gt < —Apb — Agb+ &P — AbT in Q,
= wup(z) < bfor all z € Qg (see [14, Proposition 2.10]).

This contradicts the fact that ug(z9) = b, z0 € Qo. So, we conclude that ug(z) < b for all z € Q. O
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