A rad-hard monolithic dosimeter has been implemented and characterized in a standard 180 nm CMOS technology. The radiation sensor (C-sensor) is based on a Floating Gate (FG) MOS discharge principle. The output current is processed by a current-to-voltage (I/V) interface and then converted by a 5-bit flash ADC. The dosimeter is re-usable (FG can be recharged) and can detect a dose up to 1krad (Si) with a resolution of 30rad (Si) typical over temperature 0 to 85°C range. The ADC allows easy further signal processing for calibration and averaging, etc. The power consumption of C-sensor plus I/V interface is < 2mW from a 5 V power supply. The overall layout area is less than 0.25mm2. The Radiation-Hardened-By-Design (RHBD) approach guarantees that the absorbed dose does not degrade the circuitry.
Gatti U, Calligaro C, Parlato A, Tomarchio E., Pikhay E, Roizin Y (2020). Silicon dosimeters based on Floating Gate Sensor: Design, implementation and characterization. In 20th IEEE Mediterranean Electrotechnical Conference, MELECON 2020 - Proceedings (pp. 388-392). Institute of Electrical and Electronics Engineers Inc. [10.1109/MELECON48756.2020.9140654].
Silicon dosimeters based on Floating Gate Sensor: Design, implementation and characterization
Parlato AData Curation
;Tomarchio E.Methodology
;
2020-01-01
Abstract
A rad-hard monolithic dosimeter has been implemented and characterized in a standard 180 nm CMOS technology. The radiation sensor (C-sensor) is based on a Floating Gate (FG) MOS discharge principle. The output current is processed by a current-to-voltage (I/V) interface and then converted by a 5-bit flash ADC. The dosimeter is re-usable (FG can be recharged) and can detect a dose up to 1krad (Si) with a resolution of 30rad (Si) typical over temperature 0 to 85°C range. The ADC allows easy further signal processing for calibration and averaging, etc. The power consumption of C-sensor plus I/V interface is < 2mW from a 5 V power supply. The overall layout area is less than 0.25mm2. The Radiation-Hardened-By-Design (RHBD) approach guarantees that the absorbed dose does not degrade the circuitry.File | Dimensione | Formato | |
---|---|---|---|
09140654.pdf
Solo gestori archvio
Tipologia:
Versione Editoriale
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.