Let $Omega subset mathbb{R}^n$ be a convex domain and let $f:Omega ightarrow mathbb{R}$ be a positive, subharmonic function (i.e. $Delta f geq 0$). Then $$ rac{1}{|Omega|} int_{Omega}{f dx} leq rac{c_n}{ |partial Omega| } int_{partial Omega}{ f dsigma},$$ where $c_n leq 2n^{3/2}$. This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies $c_n geq n-1$. As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other $ Omega_2 subset Omega_1 subset mathbb{R}^n$: $$ rac{|partial Omega_1|}{|Omega_1|} rac{| Omega_2|}{|partial Omega_2|} leq n.$$

T. Beck, B. Brandolini, K. Burdzy, A. Henrot, J. J. Langford, S. Larson, et al. (2019). Improved bounds for Hermite-Hadamard inequalities in higher dimensions. THE JOURNAL OF GEOMETRIC ANALYSIS, 31(1), 801-816.

Improved bounds for Hermite-Hadamard inequalities in higher dimensions

B. Brandolini;
2019

Abstract

Let $Omega subset mathbb{R}^n$ be a convex domain and let $f:Omega ightarrow mathbb{R}$ be a positive, subharmonic function (i.e. $Delta f geq 0$). Then $$ rac{1}{|Omega|} int_{Omega}{f dx} leq rac{c_n}{ |partial Omega| } int_{partial Omega}{ f dsigma},$$ where $c_n leq 2n^{3/2}$. This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies $c_n geq n-1$. As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other $ Omega_2 subset Omega_1 subset mathbb{R}^n$: $$ rac{|partial Omega_1|}{|Omega_1|} rac{| Omega_2|}{|partial Omega_2|} leq n.$$
Settore MAT/05 - Analisi Matematica
T. Beck, B. Brandolini, K. Burdzy, A. Henrot, J. J. Langford, S. Larson, et al. (2019). Improved bounds for Hermite-Hadamard inequalities in higher dimensions. THE JOURNAL OF GEOMETRIC ANALYSIS, 31(1), 801-816.
File in questo prodotto:
File Dimensione Formato  
TJGA(2019).pdf

non disponibili

Descrizione: articolo principale
Tipologia: Versione Editoriale
Dimensione 363.89 kB
Formato Adobe PDF
363.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/493949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 3
social impact