Let $Omega subset mathbb{R}^n$ be a convex domain and let $f:Omega ightarrow mathbb{R}$ be a positive, subharmonic function (i.e. $Delta f geq 0$). Then $$ rac{1}{|Omega|} int_{Omega}{f dx} leq rac{c_n}{ |partial Omega| } int_{partial Omega}{ f dsigma},$$ where $c_n leq 2n^{3/2}$. This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies $c_n geq n-1$. As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other $ Omega_2 subset Omega_1 subset mathbb{R}^n$: $$ rac{|partial Omega_1|}{|Omega_1|} rac{| Omega_2|}{|partial Omega_2|} leq n.$$
T. Beck, B. Brandolini, K. Burdzy, A. Henrot, J. J. Langford, S. Larson, et al. (2019). Improved bounds for Hermite-Hadamard inequalities in higher dimensions. THE JOURNAL OF GEOMETRIC ANALYSIS, 31(1), 801-816 [10.1007/s12220-019-00300-5].
Improved bounds for Hermite-Hadamard inequalities in higher dimensions
B. Brandolini;
2019-01-01
Abstract
Let $Omega subset mathbb{R}^n$ be a convex domain and let $f:Omega ightarrow mathbb{R}$ be a positive, subharmonic function (i.e. $Delta f geq 0$). Then $$ rac{1}{|Omega|} int_{Omega}{f dx} leq rac{c_n}{ |partial Omega| } int_{partial Omega}{ f dsigma},$$ where $c_n leq 2n^{3/2}$. This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies $c_n geq n-1$. As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other $ Omega_2 subset Omega_1 subset mathbb{R}^n$: $$ rac{|partial Omega_1|}{|Omega_1|} rac{| Omega_2|}{|partial Omega_2|} leq n.$$File | Dimensione | Formato | |
---|---|---|---|
TJGA(2019).pdf
Solo gestori archvio
Descrizione: articolo principale
Tipologia:
Versione Editoriale
Dimensione
363.89 kB
Formato
Adobe PDF
|
363.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
pre print.pdf
accesso aperto
Tipologia:
Pre-print
Dimensione
176.77 kB
Formato
Adobe PDF
|
176.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.