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ABSTRACT. Let Q C R™ be a convex domain and let f :  — R be a positive,
subharmonic function (i.e. Af > 0). Then

m|/f < 500 Joe 79

where ¢, < 2n This inequality was prcvlously only known for convex
functions with a much larger constant. We also show that the optimal constant
satisfies ¢, > n— 1. As a byproduct, we establish a sharp geometric inequality
for two convex domains where one contains the other Qo C Q1 C R™:

02| Q2] _
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1. INTRODUCTION

1.1. Convex functions. The Hermite-Hadamard inequality dates back to an 1883
observation of Hermite [10] with an independent use by Hadamard [9] in 1893: it
says that for convex functions f : [a,b] = R

()+f()
b—a/f Jdz <

This inequality is rather elementary and has been reﬁned in many ways — we refer
to the monograph of Dragomir & Pearce [7]. However, there is relatively little
work outside of the one-dimensional case; we refer to [3] 4 [14] [T5] [16], 17, 18], 21].
The strongest possible statement that one could hope for is, for convex functions
f:Q — R defined on convex domains Q2 C R",

do.
|sz|/f |aﬂ| ! %

This inequality has been shown to be true for many special cases: it is known for
Q = B3 the 3—dimensional ball by Dragomir & Pearce [7] and Q = B,, by de la
Cal & Carcamo [3] (other proofs are given by de la Cal, Carcamo & Escauriaza [4]
and Pasteczka [18]), the simplex [2], the square [6], triangles [5] and Platonic solids
[18]. Tt was pointed out by Pasteczka [18] that if the inequality holds for a domain
Q with constant 1, then plugging in affine functions shows that the center of mass
of © and the center of mass of 92 coincide, which is not generally true for convex
bodies; therefore the inequality cannot hold with constant 1 in higher dimensions
uniformly over all convex bodies. The first uniform estimate was shown in [21]: if
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f:Q — R is a convex, positive function on the convex domain 2 C R", then we
have

@) |Q|/ o< gt | 1 do

with ¢, < 2n™t1. In this paper, we will improve this uniform estimate and show
that the optimal constant satisfiesn—1 < ¢, < 2n3/2. We do not have a characteri-
zation of the extremal convex functions f on a given domain 2 (however, see below,
we have such a characterization in the larger family of subharmonic functions).

1.2. Subharmonic functions. Niculescu & Persson [I7] (see also [4, [I5]) have
pointed out that one could also seek such inequalities for subharmonic functions, i.e.
functions satisfying Af > 0. We note that all convex functions are subharmonic.
Jianfeng Lu and the last author [2I] showed that for all positive, subharmonic
functions f : Q — R on convex domains {2 C R"

1/n .
() /Qfd:vﬁlﬂl /mfd

Estimates relating the integral of a positive subharmonic function f over €2 to the
integral over the boundary 92 are linked to the torsion function on 2 given by

—Au=1 inQ
u=0 on 0.
Integration by parts and the inequalities v > 0, Af > 0 show that

Oou
Qfd:zr— Qf(—Au)d:z:—/ a—fda—/Q(Af)udx

o0

< fdo
N 37/

< max — (= do,

T zedN V( ) a0 f
where v is the inward pointing normal vector. This computation suggests that we
may have the following characterization of the optimal constant for a given convex
domain 2.

Proposition (see e.g. [8,[17]). The optimal constant ¢(2) in the inequality

/fd:v<c | fdo

for positive subharmonic functions is given by

ou
)= s

The lower bound on ¢(€2) follows from setting f to be the Poisson extension of a
Dirac measure located at the point at which the normal derivative assumes its max-
imum. The derivation also shows that it suffices to consider the case of harmonic
functions f. Implicitly, this also gives a characterization of extremizing functions
(via the Green’s function). Jianfeng Lu and the last author [14] used this proposi-
tion in combination with a gradient estimate for the torsion function to show that
the best constant in () is uniformly bounded in the dimension. We will follow a
similar strategy to obtain an improved bound for the optimal constant in (2]).



2. THE RESULTS

Our first result improves the constant ¢, from () in all dimensions for subharmonic
functions and shows that the growth is at most polynomial.

Theorem 1. Let Q C R™ be convex and let f: Q — R be a positive, subharmonic
function. Then

1 Cn
(3) o1 / fdz < fdo,
€ Jo 09| Joo
where the optimal constant c,, satisfies
n3/? if n is odd,
Cn < n’4n . .
o) if n is even.
In particular, for n = 2 dimensions, our proof shows the inequality
1 3
fdzx < fdo,
12 Jo 109 Jaq

where the constant 3 improves on constant 8 obtained earlier for convex functions
n [2I]. To complement the result in Theorem 1 we prove that any constant for
which (@) is valid must grow at least linearly with the dimension.

Theorem 2. The optimal constant ¢, in (3) is non-decreasing in n and satisfies
(4) ¢n > max{n —1,1}.

In order to prove Theorem 2 we establish a connection to an isoperimetric problem
that is of interest in its own right. Specifically, we prove the following Lemma.

Lemma. In any dimensionn > 1,

o |19
(5) sup { ||Q 1|| |1992|| : Q9 C 4 both convex domains in R"} =n.
1 2

We are not aware of any prior treatment of this shape optimization problem in the
literature. Problem (B]) can be equivalently written as

09| 1 . 1} . 0X]

:  a convex set in R” , where h(2) = inf ——

e R NPT
denotes the Cheeger constant. We refer to Alter & Caselles [I] and Kawohl &
Lachand-Robert [I1]. The result of Kawohl & Lachand-Robert [I1] will be a crucial
ingredient in the proof of Theorem 2 (we note that the infimum runs over all subsets,

it is known that the Cheeger set is unique and convex).
We also obtain a slight improvement of the constant in (2I).

Theorem 3. Let Q C R™ be convex and let f: Q — R be a positive, subharmonic

function. Then
|Q|l/n
/fd:z:< 1/ fdo,
"yn Joo

where wy, 18 the volume of the unit ball in n—dimensions.

We observe that, as n tends to infinity, wrl/ "/n — /2re. We also note a construc-
tion from [14] which shows that the constant in Theorem 3 is at most a factor V2
from optimal in high dimensions.



3. PROOF OF THEOREM 1

3.1. Convex functions. We first give a proof of Theorem 1 under the assumption
that f is convex; this argument is fairly elementary and is perhaps useful in other
settings. A full proof of Theorem 1 is given in §3.2.

Proof. This proof combines three different arguments. The first argument is that

w@) [
(6) /Q iz < 22 [ g

from the one-dimensional Hermite-Hadamard inequality applied along fibers that
are orthogonal to the hyperplanes realizing the width w(Q).

FIGURE 1. Application of the one-dimensional inequality on a one-
dimensional fiber. This step is lossy if the boundary is curved.

Steinhagen [22] showed that width can be bounded in terms of the inradius

2y/n - inrad(Q) if n is odd,
@ w() < {2 ntl . inrad(Q) if n is even
Vn+2 :

The last inequality follows from [12]: if  C R™ is a convex body and
Q ={z e N:d(z,00) > t},
where d(x, 09) denotes the distance to the boundary
d 1) = inf —
(z,00) it [z —yll,

then

n—1

t
> R — ,
[0%4] = 109 (1 inrad(Q))Jr

Since |Vd(z,08)| = 1 almost everywhere, the coarea formula implies

inrad(Q)
o= [ onuar
0

inrad(Q) n—1 .
> |5Q|/ ot dt = |69|M
0 inrad(Q) n
and thus we obtain (also stated in [13, Eq. 13])
() inrad(Q2) < n%

Combining inequalities (@), (@) and (8) implies the result. O
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Both Steinhagen’s inequality as well as inequality (8) are sharp for the regular
simplex. However, see Fig. 1, an application of the one-dimensional Hermite-
Hadamard inequality can only be sharp if the fibers are hitting the boundary at a
point at which they are normal, otherwise there is a Jacobian determinant deter-
mined by the slope of the boundary and better results are expected. It is not clear
to us how to reconcile these two competing factors.

3.2. A Proof of Theorem 1.

Proof. We have, for all positive, subharmonic functions f : Q — R,

fdr < max %(:17) fdo,

Q 20 OV 90
where u is the torsion function. A classic bound on the torsion functions is given
in Sperb [20, Eq. (6.12)]),

ou 1
— <2 2 .
max ——(z) < v2ul;

Moreover, using Steinhagen’s inequality in combination with (8], we know that 2
is contained within a strip of width

@) < 1Y) 2n3/2 if n is odd,
v = 19Q] | 2n4n if n is even.
V2

We can now use the maximum principle to argue that the torsion function in € is
bounded from above by the torsion function in the strip of width w(2) (see Fig.
2). That torsion function, however, is easy to compute since the problem becomes
one-dimensional. Orienting the strip to be given by

Q
s={@ ertxripy < 20
we see that the torsion function on the strip is given by

w()2 2
v(z,y) = (5?) —%.

<> o

FIGURE 2. The torsion function in 2 is bounded from above by
the torsion function of the strip.

This shows
w(Q)?
8

Jull o <
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and thus
ou

max 5, (@)

V2lul| 2

w(Q) |Q| { if n is odd
< <

IN

n+n

=72 S ool | nzs

if n is even.

4. PROOF OF THEOREM 2

The purpose of this section is to prove c¢,+1 > ¢, as well as the inequality
o] |Q

6 > sup { 00| |

[l 09|

Theorem 2 is then implied by this statement together the proof of the Geometric
Lemma in Section §5.

: Qs C €)1 both convex domains in R”l} .

Proof. The proof is based on explicit constructions. We first show that c,4+1 > cp.
This is straightforward and based on an extension in the (n + 1)—first coordinate:

for any € > 0, we can find a convex domain 2. C R™ and a positive, convex function
fe : Q. — R such that

1 fod —€
1] o, " |8Q| 9.

We define, for any z > 0,
Q.e={(z,y):x€Q and 0 <y <z} Cc R

and f,.: Q.. = Rvia

fedo.

foe(@,y) = fe(@).

1 1
—_— L edxdy = — dx.
0] /Qf =Y = 0] /Q Jede

This integral simplifies for z large since

Then

1
lim fzedo

1
= — do.
=00 09 ] 0. . 10| Joq. Je

Picking ¢ sufficiently small and z sufficiently large shows that ¢,4+1 < ¢, leads to a
contradiction.

We now establish the inequality inequality

Q. |9
Cp > Sup { |f911|| |19922|| : Q9 C Q7 both convex domains in R”l} .

To this end pick 0 € 2 C ©Q; € R*! in such a way that both domains are convex.
We will now define a domain Q1 C R™ and a convex function fy : Qn — R where
N > 1 will be a large parameter. We first define the convex sets

Cr={(z,y):x€Q and y > —N?}

and
ng{(:E,y): (l—m)anndy<N}
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The set Q is then given as the intersection Q = C1NCy (see Fig. 3). We observe
that Qp is the intersection of two convex sets and is therefore convex. Also, looking
at the scaling, we see that C; dominates: looking at Qy from ‘far away*, it looks
essentially like C; truncated. We now make this precise: note that there exists a
constant A > 1 such that Q7 C AQy and then

OvN{(z,y) ER":y < —(A=1N?*} =C1N{(z,y) ER" : y < —(A—1)N?}.

This means, that for NV > A, the ‘left’ part of the convex domain dominates area
and volume. We also observe that

|Qn| = N3|Ql| + (’)(NQ)
100N | = N3|0Q | + O(N?),

where the implicit constants depend on {27 and €.

FIGURE 3. The construction of C; and Cs.

Since Q5 C Q1, we have that
QO N {(z,y) eR":y >0} =Can{(z,y) e R" : y > 0}.

We now define a convex function on R™ via

Foy) = {y ify >0,

0 otherwise.

We obtain

N2
o Qn{y>0} Can{y>0} 2

N2
fda:/ fda:/ fdo=(1+0(1)—|0].
0N 89N N{y>0} 8C>N{y>0} 2

This shows that

| (14 0(1) |
—— dp = -2\ 1°%2]
] Joo T TN
and
[ () 90
9] oo N [0%]

which implies the desired result for N — oco. O



5. PROOF OF THE GEOMETRIC LEMMA

Proof. By the inequality

Q. Q|
P < inrad(Q) < n-
g = nrad() < niper

a proof of which can be found in [I3], the supremum is no larger than n since

|09 9] _ n-inrad()
(9) < — <n.

|Q |0Y] inrad(€?)
What remains is to prove that this upper bound is saturated. The underlying idea
of our proof is a theorem of Kawohl and Lachand-Robert [I1] characterizing the
Cheeger set of a convex set 0 C R2. Specifically, their theorem states that for a
convex  C R? the Cheeger problem

) o —
h(2) = 1nf{ ||Q’|| Q' C Q}

is solved by the set
Q' ={x € Q:3y e Qsuch that x € By p0)(y) C N},
where B,.(z) is a ball of radius r centered at xy. We recall our use of the notation
Q={ze€Q:d(z,N) >t}
where d(x, 09) denotes the distance to the boundary
d(z,00) = inf oy,

and we can equivalently write the Cheeger set of 2 as Q' = Q4 /5,q) + B1/n (), Where
B, denotes a ball of radius r centered in 0. Here and in what follows the sum of
two sets is to be interpreted in the sense of the Minkowski sum:

A+B={x:z=a+b,ac A be B}.

The situation when n > 2 is more complicated, and as far as we know a precise
solution of the Cheeger problem is not available [I]. Nonetheless, our aim in what
follows is to prove that by taking Q as a very thin n-simplex we can find a good
enough candidate for ' among the one-parameter family of sets

(10) Qt + Bt, 0 S t S inrad(Q).

We construct our candidate for Q as follows. Let Q(n) C R™ be the n-simplex
obtained by taking a regular (n — 1)-simplex of sidelength 7 > 1 in the hyperplane
{r € R" : 2y = —1} with (—1,0,...,0) as center of mass and adding the last vertex
at (h(n),0,...,0), where h(n) is chosen so that inrad(€2(n)) = 1. Note that, as n

becomes large, h(n) is approximately 1 and |Q(n)| ~ 91,

By construction By C €(n), and it is the unique unit ball of maximal radius con-
tained in Q(n). Moreover, the set §2(n) is a tangential body to this ball (that is, a
convex body all of whose supporting hyperplanes are tangential to the same ball).
Since every tangential body to a ball is homothetic to its form body [19] (in our
case Q(n) is in fact equal to its form body), the main result in [12] implies

10Qn)] = (1 — )" 110Q(n)|,  for all t € [0,1].



An application of the coarea formula now yields the identity

(1) )] = / ()|t = P2

n

We also note that (n) C Ba,. To see why this is true, we first note that the
inradius of the regular n-simplex (by which we mean n + 1 points all at distance 1
from each other embedded in R™) is given by

1

V2n(n+1)

The regular simplex is the convex body for which John’s theorem is sharp, the
circumradius is thus given by

Th =

NG 1

-_—nr, = - <

Ry,=n-7, CERR
This shows that (n) C Ba, (for the purpose of the proof, the constant 2 is not
important and could be replaced by a much larger (absolute) constant). Since
it makes the computations somewhat simpler we consider, for a suitably chosen
number ¢, the set (1 + ¢)Q(n). By construction By C €(n) which implies the
inclusion

Q(n) + By C Q) +t2(n) = (1 4+ t)Q(n).

In particular, we can test (@) with Q@ = (1 4+ ¢)Q(n) and Q' = Q(n) + B; for any
values of t,1 > 1. We note that up to rescaling by (1 + ¢)~! this is exactly the
family of sets in (I0). Indeed, for each ¢ the set ((1+¢)Q(n)): = Q(n).

The final step of the proof is to show that by letting ¢,77 — oo appropriately

10((1 + QM) _[2n) + Bl
[T+ Q)| |9(2n) + By

To prove (I2)) we recall the definition and some basic properties of mixed vol-
umes [19, p. 275ff]. Let K denote the set of convex bodies in R with nonempty in-
terior. The mixed volume is defined as the unique symmetric function W: £ — R
satisfying

(12)

|77191 + .. +77QO| = Z Z njl"'njnW(lev'-ijn)?
J1=1 Jn=1

for any Qi,...,Qy € K and m1,...,mm > 0 [I9. Then W satisfies the following
properties:

(1) W(Ql,,Qn) > 0 for Ql,...,Qn e K.

(2) W is a multilinear function with respect to Minkowski addition.

(3) W is increasing with respect to inclusions in each of its arguments.

(4) The volume and perimeter of € K can be written in terms of W:

Q] =W(Q,...,Q2) and [9Q =nW(Q,...,Q, By).
N—— ‘1\/_/
n times n—1 times

Since only mixed volumes of two distinct sets appear in our proof we introduce the
shorthand notation

Wi(K,L)=W(K,...,K,L,...,L).
——— ——

n—j J
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By (), we have

oL +Dem)| _ n
| 1+t

[(L+8)Q(n)
The definition of W implies
2(n) + Be| = W((n) + By, ..., Qn) + By).

Multilinearity allows us to expand this term as

=0

and the same argument shows
n—1
n—1\ ;
ot + 8 =n Y ("), 5.
j=0

Altogether, we can write the expression of interest as

g QA0 [0+ B _n X ()7 W;(2(n), B1)

(T+D)QMm)| 0 + Bl (A+8)n Y02 ("W (n), Br)
In order to prove (I2) we need a bound from below. For the sum in the numerator
it suffices to keep the first two terms in the expansion and to use Property () of
W resulting in

3 (;"‘) VW, (), Br) = Wo(Qn), By) + ntWi(Q(n), By)
j=0

= Q)| +t10Q(n)|-
To bound the sum in the denominator we wish to keep the term with j = 0 as is.
For j > 1, we now use that {}(n) C By, together with Property (B]) to bound
Wjt1(Q(n), Br) < Wjs1(Bzy, B1) = (20)" 7771 By .
Inserting the two bounds above into (I3) yields
10((L+ Q)] _|2n) + Byl
[(1+0)Qn)| 10(2n) + By)|
n [€2(n)| + |02 ()|
L6 10Q(n)| +n Y2720 ("5 1) 2n =1y =i=1| By
We recall that [Q(n)| = n=1|0Q(n)| and therefore
10((1 + 1)2m))| _|2n) + Bi|
(A +0)Qn)| 0(2n) + By)
nt 14 1/(nt)
L+ 8) 14 n|By| Y527 (7)) 209 1eign=i=1/|0Q(n)|

> 1

= 7

By construction [0Q(n)| ~ n"~* as n — co. Consequently, by choosing t = /7
(though the more general choice t = n® for 0 < o < 1 would also work) we find

tIn" =371 /10Q(n)| ~ n~7/2. Therefore, taking  (and thus t) to infinity, we obtain

tim g 2@+ VD) Q0 + Bal
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which when combined with the matching upper bound (@) completes the proof. O

6. PROOF OF THEOREM 3

Proof. We use the estimate

/ fdxr < max %(:17) fdo
Q

z€0Q OV el

introduced in Proposition 1 above and use, inspired by the argument in [14], esti-
mates for the torsion function. One such estimate for the torsion function comes
from P—functions, we refer to the classic book of Sperb [20, Eq. (6.12)],

ou 1
max —(z) < V2Julf.
It remains to estimate the largest value of the torsion function. There are two
different approaches: we can interpret it as the maximum lifetime of Brownian
motion inside a domain of given measure or we can interpret it as the solution of
a partial differential equation to which Talenti’s theorem [23] can be applied. In
both cases, we end up with a standard isoperimetric estimate [23] (that was also

used in [14])
e < = (120)°
L= =9 Wn,
to obtain
ou |Q/n
max —(z) < ———.
2€dQ Qv wi/"/m

O
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