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IMPROVED BOUNDS FOR HERMITE-HADAMARD

INEQUALITIES IN HIGHER DIMENSIONS

THOMAS BECK, BARBARA BRANDOLINI, KRZYSZTOF BURDZY, ANTOINE HENROT,
JEFFREY J. LANGFORD, SIMON LARSON, ROBERT SMITS,

AND STEFAN STEINERBERGER

Abstract. Let Ω ⊂ R
n be a convex domain and let f : Ω → R be a positive,

subharmonic function (i.e. ∆f ≥ 0). Then

1

|Ω|

∫
Ω

fdx ≤
cn

|∂Ω|

∫
∂Ω

fdσ,

where cn ≤ 2n3/2. This inequality was previously only known for convex
functions with a much larger constant. We also show that the optimal constant
satisfies cn ≥ n−1. As a byproduct, we establish a sharp geometric inequality
for two convex domains where one contains the other Ω2 ⊂ Ω1 ⊂ R

n:

|∂Ω1|

|Ω1|

|Ω2|

|∂Ω2|
≤ n.

1. Introduction

1.1. Convex functions. The Hermite-Hadamard inequality dates back to an 1883
observation of Hermite [10] with an independent use by Hadamard [9] in 1893: it
says that for convex functions f : [a, b] → R

1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

This inequality is rather elementary and has been refined in many ways – we refer
to the monograph of Dragomir & Pearce [7]. However, there is relatively little
work outside of the one-dimensional case; we refer to [3, 4, 14, 15, 16, 17, 18, 21].
The strongest possible statement that one could hope for is, for convex functions
f : Ω → R defined on convex domains Ω ⊂ R

n,

1

|Ω|

∫

Ω

f dx ≤ 1

|∂Ω|

∫

∂Ω

f dσ.

This inequality has been shown to be true for many special cases: it is known for
Ω = B3 the 3−dimensional ball by Dragomir & Pearce [7] and Ω = Bn by de la
Cal & Carcamo [3] (other proofs are given by de la Cal, Carcamo & Escauriaza [4]
and Pasteczka [18]), the simplex [2], the square [6], triangles [5] and Platonic solids
[18]. It was pointed out by Pasteczka [18] that if the inequality holds for a domain
Ω with constant 1, then plugging in affine functions shows that the center of mass
of Ω and the center of mass of ∂Ω coincide, which is not generally true for convex
bodies; therefore the inequality cannot hold with constant 1 in higher dimensions
uniformly over all convex bodies. The first uniform estimate was shown in [21]: if
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2

f : Ω → R is a convex, positive function on the convex domain Ω ⊂ R
n, then we

have

(1)
1

|Ω|

∫

Ω

f dx ≤ cn
|∂Ω|

∫

∂Ω

f dσ

with cn ≤ 2nn+1. In this paper, we will improve this uniform estimate and show
that the optimal constant satisfies n−1 ≤ cn ≤ 2n3/2. We do not have a characteri-
zation of the extremal convex functions f on a given domain Ω (however, see below,
we have such a characterization in the larger family of subharmonic functions).

1.2. Subharmonic functions. Niculescu & Persson [17] (see also [4, 15]) have
pointed out that one could also seek such inequalities for subharmonic functions, i.e.
functions satisfying ∆f ≥ 0. We note that all convex functions are subharmonic.
Jianfeng Lu and the last author [21] showed that for all positive, subharmonic
functions f : Ω → R on convex domains Ω ⊂ R

n

(2)

∫

Ω

f dx ≤ |Ω|1/n
∫

∂Ω

f dσ.

Estimates relating the integral of a positive subharmonic function f over Ω to the
integral over the boundary ∂Ω are linked to the torsion function on Ω given by

−∆u = 1 in Ω

u = 0 on ∂Ω.

Integration by parts and the inequalities u ≥ 0,∆f ≥ 0 show that
∫

Ω

fdx =

∫

Ω

f(−∆u)dx =

∫

∂Ω

∂u

∂ν
fdσ −

∫

Ω

(∆f)udx

≤
∫

∂Ω

∂u

∂ν
fdσ

≤ max
x∈∂Ω

∂u

∂ν
(x)

∫

∂Ω

fdσ,

where ν is the inward pointing normal vector. This computation suggests that we
may have the following characterization of the optimal constant for a given convex
domain Ω.

Proposition (see e.g. [8, 17]). The optimal constant c(Ω) in the inequality
∫

Ω

f dx ≤ c(Ω)

∫

∂Ω

f dσ

for positive subharmonic functions is given by

c(Ω) = max
x∈∂Ω

∂u

∂ν
(x).

The lower bound on c(Ω) follows from setting f to be the Poisson extension of a
Dirac measure located at the point at which the normal derivative assumes its max-
imum. The derivation also shows that it suffices to consider the case of harmonic
functions f . Implicitly, this also gives a characterization of extremizing functions
(via the Green’s function). Jianfeng Lu and the last author [14] used this proposi-
tion in combination with a gradient estimate for the torsion function to show that
the best constant in (2) is uniformly bounded in the dimension. We will follow a
similar strategy to obtain an improved bound for the optimal constant in (2).
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2. The Results

Our first result improves the constant cn from (1) in all dimensions for subharmonic
functions and shows that the growth is at most polynomial.

Theorem 1. Let Ω ⊂ R
n be convex and let f : Ω → R be a positive, subharmonic

function. Then

(3)
1

|Ω|

∫

Ω

fdx ≤ cn
|∂Ω|

∫

∂Ω

fdσ,

where the optimal constant cn satisfies

cn ≤
{

n3/2 if n is odd,
n2+n√
n+2

if n is even.

In particular, for n = 2 dimensions, our proof shows the inequality

1

|Ω|

∫

Ω

fdx ≤ 3

|∂Ω|

∫

∂Ω

fdσ,

where the constant 3 improves on constant 8 obtained earlier for convex functions
in [21]. To complement the result in Theorem 1 we prove that any constant for
which (3) is valid must grow at least linearly with the dimension.

Theorem 2. The optimal constant cn in (3) is non-decreasing in n and satisfies

(4) cn ≥ max{n− 1, 1}.
In order to prove Theorem 2 we establish a connection to an isoperimetric problem
that is of interest in its own right. Specifically, we prove the following Lemma.

Lemma. In any dimension n ≥ 1,

(5) sup

{ |∂Ω1|
|Ω1|

|Ω2|
|∂Ω2|

: Ω2 ⊂ Ω1 both convex domains in R
n

}

= n.

We are not aware of any prior treatment of this shape optimization problem in the
literature. Problem (5) can be equivalently written as

sup

{ |∂Ω|
|Ω|

1

h(Ω)
: Ω a convex set in R

n−1

}

, where h(Ω) = inf
X⊂Ω

|∂X |
|X |

denotes the Cheeger constant. We refer to Alter & Caselles [1] and Kawohl &
Lachand-Robert [11]. The result of Kawohl & Lachand-Robert [11] will be a crucial
ingredient in the proof of Theorem 2 (we note that the infimum runs over all subsets,
it is known that the Cheeger set is unique and convex).
We also obtain a slight improvement of the constant in (2).

Theorem 3. Let Ω ⊂ R
n be convex and let f : Ω → R be a positive, subharmonic

function. Then
∫

Ω

fdx ≤ |Ω|1/n

ω
1/n
n

√
n

∫

∂Ω

fdσ,

where ωn is the volume of the unit ball in n−dimensions.

We observe that, as n tends to infinity, ω
1/n
n

√
n →

√
2πe. We also note a construc-

tion from [14] which shows that the constant in Theorem 3 is at most a factor
√
2

from optimal in high dimensions.
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3. Proof of Theorem 1

3.1. Convex functions. We first give a proof of Theorem 1 under the assumption
that f is convex; this argument is fairly elementary and is perhaps useful in other
settings. A full proof of Theorem 1 is given in §3.2.

Proof. This proof combines three different arguments. The first argument is that

(6)

∫

Ω

fdx ≤ w(Ω)

2

∫

∂Ω

fdσ

from the one-dimensional Hermite-Hadamard inequality applied along fibers that
are orthogonal to the hyperplanes realizing the width w(Ω).

w(Ω)Ω

Figure 1. Application of the one-dimensional inequality on a one-
dimensional fiber. This step is lossy if the boundary is curved.

Steinhagen [22] showed that width can be bounded in terms of the inradius

(7) w(Ω) ≤
{

2
√
n · inrad(Ω) if n is odd,

2 n+1√
n+2

· inrad(Ω) if n is even.

The last inequality follows from [12]: if Ω ⊂ R
n is a convex body and

Ωt = {x ∈ Ω : d(x, ∂Ω) > t},
where d(x, ∂Ω) denotes the distance to the boundary

d(x, ∂Ω) = inf
y∈∂Ω

‖x− y‖,

then

|∂Ωt| ≥ |∂Ω|
(

1− t

inrad(Ω)

)n−1

+

.

Since |∇d(x, ∂Ω)| = 1 almost everywhere, the coarea formula implies

|Ω| =
∫

inrad(Ω)

0

|∂Ωt|dt

≥ |∂Ω|
∫

inrad(Ω)

0

(

1− t

inrad(Ω)

)n−1

dt = |∂Ω| inrad(Ω)
n

and thus we obtain (also stated in [13, Eq. 13])

(8) inrad(Ω) ≤ n
|Ω|
|∂Ω| .

Combining inequalities (6), (7) and (8) implies the result. �



5

Both Steinhagen’s inequality as well as inequality (8) are sharp for the regular
simplex. However, see Fig. 1, an application of the one-dimensional Hermite-
Hadamard inequality can only be sharp if the fibers are hitting the boundary at a
point at which they are normal, otherwise there is a Jacobian determinant deter-
mined by the slope of the boundary and better results are expected. It is not clear
to us how to reconcile these two competing factors.

3.2. A Proof of Theorem 1.

Proof. We have, for all positive, subharmonic functions f : Ω → R,
∫

Ω

fdx ≤ max
x∈∂Ω

∂u

∂ν
(x)

∫

∂Ω

fdσ,

where u is the torsion function. A classic bound on the torsion functions is given
in Sperb [20, Eq. (6.12)]),

max
x∈∂Ω

∂u

∂ν
(x) ≤

√
2‖u‖

1

2

L∞.

Moreover, using Steinhagen’s inequality in combination with (8), we know that Ω
is contained within a strip of width

w(Ω) ≤ |Ω|
|∂Ω|

{

2n3/2 if n is odd,

2 n2+n√
n+2

if n is even.

We can now use the maximum principle to argue that the torsion function in Ω is
bounded from above by the torsion function in the strip of width w(Ω) (see Fig.
2). That torsion function, however, is easy to compute since the problem becomes
one-dimensional. Orienting the strip to be given by

S =

{

(x, y) ∈ R
n−1 × R : |y| ≤ w(Ω)

2

}

,

we see that the torsion function on the strip is given by

v(x, y) =
w(Ω)2

8
− y2

2
.

w(Ω)Ω

Figure 2. The torsion function in Ω is bounded from above by
the torsion function of the strip.

This shows

‖u‖L∞ ≤ w(Ω)2

8
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and thus

max
x∈∂Ω

∂u

∂ν
(x) ≤

√
2‖u‖1/2L∞

≤ w(Ω)

2
≤ |Ω|

|∂Ω|

{

n3/2 if n is odd
n2+n√
n+2

if n is even.

�

4. Proof of Theorem 2

The purpose of this section is to prove cn+1 ≥ cn as well as the inequality

cn ≥ sup

{ |∂Ω1|
|Ω1|

|Ω2|
|∂Ω2|

: Ω2 ⊂ Ω1 both convex domains in R
n−1

}

.

Theorem 2 is then implied by this statement together the proof of the Geometric
Lemma in Section §5.

Proof. The proof is based on explicit constructions. We first show that cn+1 ≥ cn.
This is straightforward and based on an extension in the (n+ 1)−first coordinate:
for any ε > 0, we can find a convex domain Ωε ⊂ R

n and a positive, convex function
fε : Ωε → R such that

1

|Ωε|

∫

Ωε

fεdx ≥ cn − ε

|∂Ωε|

∫

∂Ωε

fεdσ.

We define, for any z > 0,

Ωz,ε = {(x, y) : x ∈ Ωε and 0 ≤ y ≤ z} ⊂ R
n+1

and fz,ε : Ωz,ε → R via

fz,ε(x, y) = fε(x).

Then
1

|Ωz,ε|

∫

Ωz,ε

fz,εdxdy =
1

|Ωε|

∫

Ωε

fεdx.

This integral simplifies for z large since

lim
z→∞

1

|∂Ωz,ε|

∫

∂Ωz,ε

fz,εdσ =
1

|∂Ωε|

∫

∂Ωε

fεdσ.

Picking ε sufficiently small and z sufficiently large shows that cn+1 < cn leads to a
contradiction.

We now establish the inequality inequality

cn ≥ sup

{ |∂Ω1|
|Ω1|

|Ω2|
|∂Ω2|

: Ω2 ⊂ Ω1 both convex domains in R
n−1

}

.

To this end pick 0 ∈ Ω2 ⊂ Ω1 ⊂ R
n−1 in such a way that both domains are convex.

We will now define a domain ΩN ⊂ R
n and a convex function fN : ΩN → R where

N ≫ 1 will be a large parameter. We first define the convex sets

C1 =
{
(x, y) : x ∈ Ω1 and y ≥ −N3

}

and

C2 =
{

(x, y) : x ∈
(

1− y

N2

)

Ω2 and y ≤ N
}

.
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The set ΩN is then given as the intersection ΩN = C1∩C2 (see Fig. 3). We observe
that ΩN is the intersection of two convex sets and is therefore convex. Also, looking
at the scaling, we see that C1 dominates: looking at ΩN from ‘far away‘, it looks
essentially like C1 truncated. We now make this precise: note that there exists a
constant λ ≥ 1 such that Ω1 ⊆ λΩ2 and then

ΩN ∩
{
(x, y) ∈ R

n : y ≤ −(λ− 1)N2
}
= C1 ∩

{
(x, y) ∈ R

n : y ≤ −(λ− 1)N2
}
.

This means, that for N ≫ λ, the ‘left’ part of the convex domain dominates area
and volume. We also observe that

|ΩN | = N3|Ω1|+O(N2)

|∂ΩN | = N3|∂Ω1|+O(N2),

where the implicit constants depend on Ω1 and Ω2.

y−N3 0 N

Figure 3. The construction of C1 and C2.

Since Ω2 ⊂ Ω1, we have that

ΩN ∩ {(x, y) ∈ R
n : y ≥ 0} = C2 ∩ {(x, y) ∈ R

n : y ≥ 0} .
We now define a convex function on R

n via

f(x, y) =

{

y if y ≥ 0,

0 otherwise.

We obtain
∫

ΩN

f dxdy =

∫

ΩN∩{y>0}
f dxdy =

∫

C2∩{y>0}
f dxdy = (1 + o(1))

N2

2
|Ω2|

∫

∂ΩN

f dσ =

∫

∂ΩN∩{y>0}
f dσ =

∫

∂C2∩{y>0}
f dσ = (1 + o(1))

N2

2
|∂Ω2|.

This shows that
1

|ΩN |

∫

ΩN

f dx =
(1 + o(1))

2N

|Ω2|
|Ω1|

and
1

|∂ΩN |

∫

∂ΩN

f dσ =
(1 + o(1))

2N

|∂Ω2|
|∂Ω1|

which implies the desired result for N → ∞. �
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5. Proof of the Geometric Lemma

Proof. By the inequality

|Ω|
|∂Ω| ≤ inrad(Ω) ≤ n

|Ω|
|∂Ω| ,

a proof of which can be found in [13], the supremum is no larger than n since

(9)
|∂Ω|
|Ω|

|Ω′|
|∂Ω′| ≤

n · inrad(Ω′)

inrad(Ω)
≤ n.

What remains is to prove that this upper bound is saturated. The underlying idea
of our proof is a theorem of Kawohl and Lachand-Robert [11] characterizing the
Cheeger set of a convex set Ω ⊂ R

2. Specifically, their theorem states that for a
convex Ω ⊂ R

2 the Cheeger problem

h(Ω) = inf

{ |∂Ω′|
|Ω′| : Ω′ ⊂ Ω

}

is solved by the set

Ω′ = {x ∈ Ω : ∃y ∈ Ω such that x ∈ B1/h(Ω)(y) ⊂ Ω},
where Br(x0) is a ball of radius r centered at x0. We recall our use of the notation

Ωt = {x ∈ Ω : d(x, ∂Ω) > t},
where d(x, ∂Ω) denotes the distance to the boundary

d(x, ∂Ω) = inf
y∈∂Ω

‖x− y‖,

and we can equivalently write the Cheeger set of Ω as Ω′ = Ω1/h(Ω)+B1/h(Ω), where
Br denotes a ball of radius r centered in 0. Here and in what follows the sum of
two sets is to be interpreted in the sense of the Minkowski sum:

A+B = {x : x = a+ b, a ∈ A, b ∈ B}.
The situation when n ≥ 2 is more complicated, and as far as we know a precise
solution of the Cheeger problem is not available [1]. Nonetheless, our aim in what
follows is to prove that by taking Ω as a very thin n-simplex we can find a good
enough candidate for Ω′ among the one-parameter family of sets

(10) Ωt +Bt, 0 ≤ t ≤ inrad(Ω).

We construct our candidate for Ω as follows. Let Ω(η) ⊂ R
n be the n-simplex

obtained by taking a regular (n− 1)-simplex of sidelength η ≫ 1 in the hyperplane
{x ∈ R

n : x1 = −1} with (−1, 0, . . . , 0) as center of mass and adding the last vertex
at (h(η), 0, . . . , 0), where h(η) is chosen so that inrad(Ω(η)) = 1. Note that, as η
becomes large, h(η) is approximately 1 and |Ω(η)| ∼ ηd−1.

By construction B1 ⊂ Ω(η), and it is the unique unit ball of maximal radius con-
tained in Ω(η). Moreover, the set Ω(η) is a tangential body to this ball (that is, a
convex body all of whose supporting hyperplanes are tangential to the same ball).
Since every tangential body to a ball is homothetic to its form body [19] (in our
case Ω(η) is in fact equal to its form body), the main result in [12] implies

|(∂Ω(η))t| = (1− t)n−1|∂Ω(η)|, for all t ∈ [0, 1].
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An application of the coarea formula now yields the identity

(11) |Ω(η)| =
∫ 1

0

|∂(Ω(η))t|dt =
|∂Ω(η)|

n
.

We also note that Ω(η) ⊂ B2η. To see why this is true, we first note that the
inradius of the regular n-simplex (by which we mean n+ 1 points all at distance 1
from each other embedded in R

n) is given by

rn =
1

√

2n(n+ 1)
.

The regular simplex is the convex body for which John’s theorem is sharp, the
circumradius is thus given by

Rn = n · rn =

√
n

√

2(n+ 1)
≤ 1√

2
.

This shows that Ω(η) ⊂ B2η (for the purpose of the proof, the constant 2 is not
important and could be replaced by a much larger (absolute) constant). Since
it makes the computations somewhat simpler we consider, for a suitably chosen
number t, the set (1 + t)Ω(η). By construction B1 ⊂ Ω(η) which implies the
inclusion

Ω(η) +Bt ⊂ Ω(η) + tΩ(η) = (1 + t)Ω(η).

In particular, we can test (5) with Ω = (1 + t)Ω(η) and Ω′ = Ω(η) + Bt for any
values of t, η ≫ 1. We note that up to rescaling by (1 + t)−1 this is exactly the
family of sets in (10). Indeed, for each t the set ((1 + t)Ω(η))t = Ω(η).

The final step of the proof is to show that by letting t, η → ∞ appropriately

(12)
|∂((1 + t)Ω(η))|
|(1 + t)Ω(η)|

|Ω(η) +Bt|
|∂(Ω(η) +Bt)|

→ n.

To prove (12) we recall the definition and some basic properties of mixed vol-
umes [19, p. 275ff]. Let K denote the set of convex bodies in R

n with nonempty in-
terior. The mixed volume is defined as the unique symmetric functionW : Kn → R+

satisfying

|η1Ω1 + . . .+ ηmΩm| =
m∑

j1=1

· · ·
m∑

jn=1

ηj1 · · · ηjnW (Ωj1 , . . . ,Ωjn),

for any Ω1, . . . ,Ωm ∈ K and η1, . . . , ηm ≥ 0 [19]. Then W satisfies the following
properties:

(1) W (Ω1, . . . ,Ωn) > 0 for Ω1, . . . ,Ωn ∈ K.
(2) W is a multilinear function with respect to Minkowski addition.
(3) W is increasing with respect to inclusions in each of its arguments.
(4) The volume and perimeter of Ω ∈ K can be written in terms of W :

|Ω| = W (Ω, . . . ,Ω
︸ ︷︷ ︸

n times

) and |∂Ω| = nW (Ω, . . . ,Ω
︸ ︷︷ ︸

n−1 times

, B1).

Since only mixed volumes of two distinct sets appear in our proof we introduce the
shorthand notation

Wj(K,L) = W (K, . . . ,K
︸ ︷︷ ︸

n−j

, L, . . . , L
︸ ︷︷ ︸

j

).
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By (11), we have
|∂((1 + t)Ω(η))|
|(1 + t)Ω(η)| =

n

1 + t
.

The definition of W implies

|Ω(η) +Bt| = W (Ω(η) +Bt, . . . ,Ω(η) + Bt).

Multilinearity allows us to expand this term as

W (Ω(η) +Bt, . . . ,Ω(η) +Bt) =

n∑

j=0

(
n

j

)

tjWj(Ω(η), B1)

and the same argument shows

|∂(Ω(η) +Bt)| = n

n−1∑

j=0

(
n− 1

j

)

tjWj+1(Ω(η), B1).

Altogether, we can write the expression of interest as

(13)
|∂((1 + t)Ω(η))|
|(1 + t)Ω(η)|

|Ω(η) +Bt|
|∂(Ω(η) +Bt)|

=
n

(1 + t)

∑n
j=0

(
n
j

)
tjWj(Ω(η), B1)

n
∑n−1

j=0

(
n−1
j

)
tjWj+1(Ω(η), B1)

.

In order to prove (12) we need a bound from below. For the sum in the numerator
it suffices to keep the first two terms in the expansion and to use Property (1) of
W resulting in

n∑

j=0

(
n

j

)

tjWj(Ω(η), B1) ≥ W0(Ω(η), B1) + ntW1(Ω(η), B1)

= |Ω(η)|+ t|∂Ω(η)|.
To bound the sum in the denominator we wish to keep the term with j = 0 as is.
For j ≥ 1, we now use that Ω(η) ⊂ B2η together with Property (3) to bound

Wj+1(Ω(η), B1) ≤ Wj+1(B2η, B1) = (2η)n−j−1|B1|.
Inserting the two bounds above into (13) yields

|∂((1 + t)Ω(η))|
|(1 + t)Ω(η)|

|Ω(η) +Bt|
|∂(Ω(η) +Bt)|

≥ n

(1 + t)

|Ω(η)| + t|∂Ω(η)|
|∂Ω(η)|+ n

∑n−1
j=1

(
n−1
j

)
2n−j−1tjηn−j−1|B1|

.

We recall that |Ω(η)| = n−1|∂Ω(η)| and therefore

|∂((1 + t)Ω(η))|
|(1 + t)Ω(η)|

|Ω(η) +Bt|
|∂(Ω(η) +Bt)|

≥ nt

(1 + t)

1 + 1/(nt)

1 + n|B1|
∑n−1

j=1

(
n−1
j

)
2n−j−1tjηn−j−1/|∂Ω(η)|

.

By construction |∂Ω(η)| ∼ ηn−1 as η → ∞. Consequently, by choosing t =
√
η

(though the more general choice t = ηα for 0 < α < 1 would also work) we find
tjηn−j−1/|∂Ω(η)| ∼ η−j/2. Therefore, taking η (and thus t) to infinity, we obtain

lim inf
η→∞

|∂((1 +√
η)Ω(η))|

|(1 +√
η)Ω(η)|

|Ω(η) +B√
η|

|∂(Ω(η) +B√
η)|

≥ n,
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which when combined with the matching upper bound (9) completes the proof. �

6. Proof of Theorem 3

Proof. We use the estimate
∫

Ω

fdx ≤ max
x∈∂Ω

∂u

∂ν
(x)

∫

∂Ω

fdσ

introduced in Proposition 1 above and use, inspired by the argument in [14], esti-
mates for the torsion function. One such estimate for the torsion function comes
from P−functions, we refer to the classic book of Sperb [20, Eq. (6.12)],

max
x∈∂Ω

∂u

∂ν
(x) ≤

√
2‖u‖

1

2

L∞.

It remains to estimate the largest value of the torsion function. There are two
different approaches: we can interpret it as the maximum lifetime of Brownian
motion inside a domain of given measure or we can interpret it as the solution of
a partial differential equation to which Talenti’s theorem [23] can be applied. In
both cases, we end up with a standard isoperimetric estimate [23] (that was also
used in [14])

‖u‖L∞ ≤ 1

2n

( |Ω|
ωn

) 2

n

to obtain

max
x∈∂Ω

∂u

∂ν
(x) ≤ |Ω|1/n

ω
1/n
n

√
n
.

�
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