Few years ago Găvruţa gave the notions of K-frame and atomic system for a linear bounded operator K in a Hilbert space H in order to decompose R(K), the range of K, with a frame-like expansion. These notions are here generalized to the case of a densely defined and possibly unbounded operator A on a Hilbert space in a continuous setting, thus extending what have been done in a previous paper in a discrete framework.

Bellomonte, G. (2021). Continuous frames for unbounded operators. ADVANCES IN OPERATOR THEORY, 6(2), 1-28 [10.1007/s43036-021-00136-3].

Continuous frames for unbounded operators

Bellomonte, Giorgia
2021

Abstract

Few years ago Găvruţa gave the notions of K-frame and atomic system for a linear bounded operator K in a Hilbert space H in order to decompose R(K), the range of K, with a frame-like expansion. These notions are here generalized to the case of a densely defined and possibly unbounded operator A on a Hilbert space in a continuous setting, thus extending what have been done in a previous paper in a discrete framework.
Settore MAT/05 - Analisi Matematica
https://rdcu.be/cg2HK
Bellomonte, G. (2021). Continuous frames for unbounded operators. ADVANCES IN OPERATOR THEORY, 6(2), 1-28 [10.1007/s43036-021-00136-3].
File in questo prodotto:
File Dimensione Formato  
Bellomonte-2021-Advances_in_Operator_Theory.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione Editoriale
Dimensione 636.9 kB
Formato Adobe PDF
636.9 kB Adobe PDF Visualizza/Apri
PublicationAgreement.pdf

Solo gestori archvio

Descrizione: Contratto editore/Agreement editore
Tipologia: Contratto con l'editore (ATTENZIONE: NON TRASFERIRE A SITO DOCENTE)
Dimensione 59.47 kB
Formato Adobe PDF
59.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/492572
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact