
ORIGINAL PAPER

Continuous frames for unbounded operators

Giorgia Bellomonte1

Received: 15 December 2020 / Accepted: 24 February 2021
� The Author(s) 2021

Abstract
Few years ago Găvruţa gave the notions of K-frame and atomic system for a linear

bounded operator K in a Hilbert space H in order to decompose RðKÞ, the range of
K, with a frame-like expansion. These notions are here generalized to the case of a

densely defined and possibly unbounded operator A on a Hilbert space in a con-

tinuous setting, thus extending what have been done in a previous paper in a discrete

framework.

Keywords Continuous A-frames � Continuous weak A-frames � Continuous
atomic systems � Unbounded operators

Mathematics Subject Classification 42C15 � 47A05 � 47A63 � 41A65

1 Introduction

The notion of discrete frame was introduced by Duffin and Schaefer in 1952 [19]

even though it raised on the mathematical and physical scene in 1986 with the paper

of Daubechies, Grossmann, Meyer because of their use in wavelet analysis. In the

early ’90s Ali, Antoine and Gazeau [1] and, independently, Kaiser [25] extended

this notion to the continuous case. Continuous frames have been deeply investigated

also in [27]. Over the years many extensions of frames have been introduced and

studied. Most of them have been considered in the discrete case because of their

wide use in applications e.g. in signal processing [19]. Frames have been studied for

the whole Hilbert space or for a closed subspace until 2012, when Găvruţa [22] gave

Tusi
Mathematical
Research
Group

Communicated by Christopher Heil.

& Giorgia Bellomonte

giorgia.bellomonte@unipa.it

1 Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Via Archirafi, 34,
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the notions of K-frame and of atomic system for a bounded operator K everywhere

defined on H, thus generalizing the notion of frame and that of atomic system for a

subspace due to Feichtinger and Werther [21]. K-frames allow to write each element

ofRðKÞ, the range of K, which is not a closed subspace in general, as a combination

of the elements of the K-frame, which do not necessarily belong to RðKÞ with

K 2 BðHÞ. K-frames have been generalized in [4] and [23] where the notion of K-g-
frames was investigated and have been further generalized in 2018 to the continuous

case in [2].

Let H be a Hilbert space with inner product � �jh i and norm k � k, ðX; lÞ a measure

space where l is a positive measure and A a densely defined operator on H. Let

/ : x 2 X ! /x 2 H be a Bessel function, i.e. / be such that for all f 2 H, the map

x ! f /xjh i is a measurable function on X and there exists a constant b[ 0 such that
R
X j f /xjh ij2dlðxÞ� bkfk2, 8f 2 H. Assume that for f 2 DðAÞ (the domain of A) we

have the decomposition

Af ujh i ¼
Z

X

af ðxÞ /x ujh idlðxÞ; 8u 2 DðA�Þ

for some af 2 L2ðX; lÞ. If A is unbounded, the function af can not depend contin-

uously on f, differently to what occurs when A is bounded. In order to decompose

the range of a densely defined unbounded operator A as a combination of vectors in

H, we need somewhat which takes on its unboundedness. In literature there are

some generalizations to the continuous case of the notion of K-frame, as e.g. c-K-g-
frames in [2]); however, as far as the author knows, the case of an unbounded

operator K in H has been little considered.

In [10] this problem has been addressed in the discrete case. In the present paper

both the approaches introduced in [10] are extended to the continuous setting. One
of the approaches involves a Bessel function / and the coefficient function af
depends continuously on f 2 DðAÞ only in the graph topology of A, which is

stronger than the norm of H; the other one involves a non-Bessel function / but the

coefficient function af depends continuously on f 2 DðAÞ. In the latter approach, the
notions of continuous weak A-frame and continuous weak atomic system for an

unbounded operator A are introduced and studied.

If / : X ! H is a continuous frame for H then of course

Af hjh i ¼
Z

X

Af fxjh i /x hjh idlðxÞ; 8f 2 DðAÞ; h 2 H

where f : X ! H is a dual frame of /. In contrast, if / is a continuous weak A-
frame, then there exists a Bessel function w : X ! H such that

Ah ujh i ¼
Z

X

hhjwxi /x ujh idlðxÞ; 8h 2 DðAÞ; u 2 DðA�Þ

and the action of the operator A does not appear in the weak decomposition of the

range of A, see Theorem 3.20. Still, continuous weak A-frames clearly call to mind

continuous multipliers which are the object of interest of a recent literature even

though unbounded multipliers, as far the author knows, have been little looked over.
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For example, some initial steps toward this direction have been done, in the discrete

case, in [5–8, 24] where some unbounded multipliers have been defined. Therefore

this paper can spur investigation in the direction of unbounded multipliers in the

continuous case.

The paper is organized as follows. In Sect. 2 we recall some well known

definitions and introduce the generalized frame operator T/ which is the operator

associated to a sesquilinear form defined by means of a function

/ : x 2 X ! /x 2 H. In Sect. 3 we introduce, prove the existence under opportune

hypotheses, and study the notions of continuous weak A-frame and continuous weak

atomic system for a densely defined operator A in a Hilbert space H. To go into

more detail, after having introduced and studied the notion of continuous weak A-
frame, Sect. 3.1 is devoted to the study of frame-related operators as the analysis,

synthesis and (generalized) frame operators of a continuous weak A-frame. In Sect.

3.2 the notion of continuous weak atomic system for an unbounded operator A in

Hilbert space H is given.

Under some hypotheses, this notion is equivalent to that of continuous weak A-
frame. Moreover, given a suitable function / : x 2 X ! /x 2 H, for every bounded

operator M 2 BðH; L2ðX; lÞÞ, an operator AM can be constructed in order / to be a

continuous weak atomic system for AM . Section 4 is devoted to the second approach

to the problem of decomposing the range of an unbounded operator in Hilbert space:

we consider a bounded operator K from a Hilbert space J into another one H and

give some results about both continuous K-frames and continuous atomic systems

for K and about their frame-related operators, then in Sect. 4.1, we use them to study

the case of an unbounded closed and densely defined operator A : DðAÞ ! H
viewing it as a bounded one A : HA ! H, where HA is the Hilbert space obtained

by giving DðAÞ the graph norm.

2 Definitions and preliminary results

Throughout the paper we denote by H an infinite dimensional complex Hilbert

space with inner product � �jh i linear in the first entry and conjugate linear in the

second entry, and induced norm k � k. The term operator is used for a linear

mapping. Given an operator A, we denote its domain by DðAÞ, its range by RðAÞ
and its adjoint by A�, if A is densely defined. By BðHÞ we denote the Banach space

of all bounded linear operators from H into H and by kAk the usual norm of the

operator A 2 BðHÞ. We indicate by ðX; lÞ a measure space X with positive measure

l, sometimes we will require it is r-finite, i.e. X can be covered with at most

countably many measurable, possibly disjoint, sets fXngn2N of finite measure. For

brevity we indicate by L2ðX; lÞ the class of all l-measurable functions f : X ! C

such that

kf k22 ¼
Z

X

jf ðxÞj2dlðxÞ\1;

by identifying functions which differ only on a l-null subset of X.
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Let us briefly recall the notion of continuous frame, see e.g. [1, Definition 2.1],

[13, Definition 5.6.1].

Definition 2.1 A continuous frame for H is a function / : x 2 X ! /x 2 H for

which

(i) for all h 2 H, the map x ! h /xjh i is a measurable function on X (i.e. the

function / is weakly measurable),

(ii) there exist constants a; b[ 0 such that

akhk2 �
Z

X

j h /xjh ij2dlðxÞ� bkhk2; 8h 2 H: ð2:1Þ

The function / is called a Bessel function if at least the upper condition in (2.1)

holds. If a ¼ b ¼ 1 then the function / is called a Parseval frame.

The main feature of a frame, hence of a continuous frame too, is the possibility of

writing each vector of a Hilbert space as a sum of a infinite linear combination of

vectors in the space getting rid of rigidness of orthonormality of the vectors of a

basis and of the uniqueness of the decomposition, but still maintaining numerical

stability of the reconstruction and fast convergence. By a continuous frame it is

possible to represent every element of the Hilbert space by a reconstruction formula:

if / : x 2 X ! /x 2 H is a continuous frame for the Hilbert space H, then any

h 2 H can be expressed as

h ¼
Z

X

h wxjh i/xdlðxÞ;

where w : x 2 X ! wx 2 H is a function called dual of / and the integrals have to

be understood in the weak sense, as usual.

2.1 Frame-related operators and sesquilinear forms

In this section we recall the definitions of the main operators linked to a / : x 2
X ! /x 2 H and prove some results about them. We want to drive the attention of

the reader on the fact that, in contrast with the discrete case where some results

involve strong convergence [10], in the continuous case we can prove our results

just in weak sense.

In the sequel we will briefly indicate the range f/xgx2X of a function / : x 2
X ! /x 2 H by f/xg. Consider the function / : x 2 X ! /x 2 H and the set

DðC/Þ ¼ h 2 H :

Z

X

j h /xjh ij2dlðxÞ\1
� �

:

The operator C/ : h 2 DðC/Þ � H ! h /xjh i 2 L2ðX; lÞ strongly defined, for every

h 2 DðC/Þ and for every x 2 X, by
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ðC/hÞðxÞ ¼ h /xjh i ð2:2Þ

is called the analysis operator of the function /, borrowing the terminology from

frame theory.

Remark 2.2 In general the domain of C/ is not dense, hence C�
/ is not well-defined.

An example of function whose analysis operator is densely defined can be found in

Example 2.8, where DðC/Þ ¼ DðX/Þ. Moreover, a sufficient condition for DðC/Þ to
be dense in H is that /x 2 DðC/Þ for every x 2 X, see [3, Lemma 2.3].

The next result will be often needed in Sect. 3. It is a part of Lemma 2.1 in [3];

there, f/xg needs not to be total.

Proposition 2.3 Let / : x 2 X ! /x 2 H. The analysis operator C/ is closed.

If C/ is densely defined, let us calculate its adjoint operator: let a 2 DðC�
/Þ with

DðC�
/Þ ¼ fa 2 L2ðX;lÞ : 9 g 2 H such that C/h aj

� �
2
¼ h gjh i; 8h 2 DðC/Þg

C�
/a hj

D E
¼ a C/h

�
�� �

2
¼

Z

X

aðxÞ /x hjh idlðxÞ; h 2 DðC/Þ

hence C�
/ : DðC�

/Þ � L2ðX; lÞ ! H is weakly defined by:

C�
/a hj

D E
¼

Z

X

aðxÞ/x hjh idlðxÞ; a 2 DðC�
/Þ; h 2 DðC/Þ

and is called the synthesis operator of the function / where

DðC�
/Þ :¼ a 2 L2ðX; lÞ :

Z

X

aðxÞ/x hjh idlðxÞ exists 8h 2 DðC/Þ
� �

:

Remark 2.4 Thus, if C/ is densely defined, then the synthesis operator C�
/ is a

densely defined closed operator.

Proposition 2.5 [20] The function / : x 2 X ! /x 2 H is Bessel with bound b[ 0

if and only if the synthesis operator C�
/ is linear and bounded on L2ðX; lÞ with

kC�
/kL2;H �

ffiffiffi
b

p
. Moreover, the analysis operator C/ is linear and bounded on H

with kC/kH;L2 �
ffiffiffi
b

p
. More precisely

kC�
/kL2;H ¼ kC/kH;L2 ¼ sup

f2H;kfk¼1

Z

X

f /xjh ij j2dlðxÞ
� 	1=2

�
ffiffiffi
b

p
:

Extending to the continuous case [15], consider the set

DðX/Þ ¼ f 2 H :

Z

X

j f /xjh ij2dlðxÞ\1
� �

¼ DðC/Þ

and the mapping X/ : DðX/Þ � DðX/Þ ! C defined by
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X/ðf ; gÞ :¼
Z

X

f /xjh i /x gjh idlðxÞ: ð2:3Þ

X/ is clearly a non-negative symmetric sesquilinear form which is well defined for

every f ; g 2 DðX/Þ because of the Cauchy–Schwarz inequality. It is unbounded in

general. Moreover, since DðX/Þ is the largest domain such that X/ is defined on

DðX/Þ � DðX/Þ, it results that

X/ðf ; gÞ ¼ C/f C/g
�
�� �

2
; 8f ; g 2 DðC/Þ ¼ DðX/Þ ð2:4Þ

where C/ is the analysis operator defined in (2.2). Since C/ is a closed operator, X/

is a closed non-negative symmetric sesquilinear form in H, see e.g. [26, Example

VI.1.13]. Let us assume that DðX/Þ is dense in H, then by Kato’s first represen-

tation theorem [26, Theorem VI.2.1] there exists a positive self-adjoint operator T/
associated to the sesquilinear form X/ on

DðT/Þ ¼ff 2 DðX/Þ : h !
Z

X

f /xjh i /x hjh idlðxÞ

is bounded on DðX/Þ w.r. to k � kg
ð2:5Þ

defined by

T/f :¼ h ð2:6Þ

with h as in (2.5), h is uniquely determined because of the density of DðX/Þ. The
operator T/ is the greatest one whose domain is contained in DðX/Þ and for which

the following representation holds

X/ðf ; gÞ ¼ T/f gj
� �

; f 2 DðT/Þ; g 2 DðX/Þ:

The set DðT/Þ is dense in DðX/Þ, see [26, p. 279]. Furthermore, by Kato’s second

representation theorem [26, Theorem VI.2.23], DðX/Þ ¼ DðT1=2
/ Þ and

X/ðf ; gÞ ¼ T
1=2
/ f T

1=2
/ g

�
�
�

D E
; 8f ; g 2 DðX/Þ

and comparing with (2.4), we obtain T/ ¼ C�
/C/ ¼ jC/j2 on DðT/Þ.

Definition 2.6 The operator T/ : DðT/Þ � H ! H defined by (2.6) will be said the

generalized frame operator of the function / : x 2 X ! /x 2 H.

Given / : x 2 X ! /x 2 H, coherently with [3], the operator S/ : DðS/Þ �
H ! H weakly defined by

S/f gj
� �

¼
Z

X

f /xjh i /x gjh idlðxÞ; f 2 DðS/Þ; g 2 H

where
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DðS/Þ ¼ ff 2 H :

Z

X

f /xjh i/x dlðxÞ converges weakly in Hg

is called the frame operator of /. It is a positive operator on its domain and

symmetric indeed for every f ; g 2 DðS/Þ

S/f gj
� �

¼
Z

X

f /xjh i /x gjh idlðxÞ ¼
Z

X

/x fjh i g /xjh i dlðxÞ

¼
Z

X

g /xjh i /x fjh idlðxÞ ¼ f S/g
�
�� �

;

but non densely defined in general. If / is a continuous frame for H, then the frame

operator S/ is a bounded operator in H, positive, invertible with bounded inverse,

see e.g. [1].

Remark 2.7 The generalized frame operator T/ and the frame operator S/ coincide

on DðS/Þ � DðT/Þ. If in particular / is a continuous frame for H, then C/; S/ are

defined on the whole H and C�
/ on the whole L2ðX; lÞ, see also [3], and T/ ¼

C�
/C/ ¼ S/ on H. However, in general, they are not the same operator, as the

following example shows.

Example 2.8 Let X be such that lðXÞ ¼ 1 and having a covering made up of a

countable collection fXngn2N of disjoint measurable subspaces of X each of measure

M[ 0, H a separable Hilbert space and fengn2N an orthonormal basis of H. Let

a[ 1; b[ 0 and define / : x 2 X ! /x 2 H with

/x ¼
/2n�1 :¼ nben; if x 2 X2n�1

/2n :¼ ðnþ 1Þaðenþ1 � enÞ; if x 2 X2n:

(

Then

DðX/Þ ¼
(

f 2 H :
X1

n¼1

n2bj f enjh ij2 þ
X1

n¼1

ðnþ 1Þ2aj f enþ1 � enjh ij2\1
)

is dense. Indeed, consider the sequence f/ngn2N � H, then for every m 2 N

Z

X

/m /xjh ij j2dlðxÞ ¼
X1

k¼1

Z

Xk

/m /kjh ij j2dlðxÞ\1

because only two, three, or six terms in the series are different from zero, depending

on the value of m. Then spanf/xg ¼ spanf/ng � DðX/Þ. On the other hand

ðspanf/ngÞ? � DðX/Þ, hence

H ¼ spanf/ng � ðspanf/ngÞ
? � DðX/Þ

hence DðX/Þ is dense in H. We shall prove that there exists a f 2 DðT/Þ such that

f 62 DðS/Þ. Let f 2 H be such that f enjh i ¼ 1
np for every n 2 N, for a fixed
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p 2 f1; 2; :::g. We want to calculate for which values of a and b such an f 2 H is in

DðT/Þ n DðS/Þ. For f 2 DðX/Þ it has to be

X1

n¼1

n2b

n2p
þ
X1

n¼1

ðnþ 1Þ2a np � ðnþ 1Þpj j2

n2pðnþ 1Þ2p
\1: ð2:7Þ

For p[ bþ 1
2
the first series in (2.7) converges, the second has general term that

behaves like 1
n2ðp�aþ1Þ hence if p[ a� 1

2
too, then the series converges. To be f 2

DðT/Þ the functional g 2 DðX/Þ !
R
X f /xjh i /x gjh idlðxÞ has to be bounded. Take

any g 2 DðX/Þ, then
R
X f /xjh i /x gjh idlðxÞ ¼ M

P1
n¼1 f /njh i/n gj

� �
. Let us consider

the sequence of partial sums of the series
P1

n¼1 f /njh i/n:

s2m�1 ¼
Xm

n¼1

f /2n�1jh i/2n�1 þ
Xm�1

n¼1

f /2njh i/2n

¼ae1 þ
Xm�1

n¼2

bnðpÞen þ cmðpÞem

and

s2m ¼
Xm

n¼1

f /2n�1jh i/2n�1 þ
Xm

n¼1

f /2njh i/2n

¼ae1 þ
Xm

n¼2

bnðpÞen þ dmþ1ðpÞemþ1

with a ¼ 1þ 22a 1� 1
2p


 �� 
[ 0,

bnðpÞ ¼
n2b

np
þ n2a½ðn� 1Þp � np	

npðn� 1Þp � ðnþ 1Þ2a½np � ðnþ 1Þp	
npðnþ 1Þp ¼ n2b

np
þ b0nðpÞ

and

cmðpÞ ¼
m2b

mp
þ dmðpÞ; dmþ1ðpÞ ¼

ðmþ 1Þ2a½mp � ðmþ 1Þp	
mpðmþ 1Þp

where b0nðpÞ ¼
pðp�1Þ
np�2aþ2 þ o 1

np�2aþ2


 �
and dmðpÞ ¼ �p

np�2aþ1 þ oð 1
np�2aþ1Þ. For p[ 2bþ 1

2
and

p[ 2a� 3
2
the sequence fbnðpÞg belongs to ‘2. Moreover, for every g 2 DðX/Þ we

have that nbj en gjh ij ! 0, hence, if also p
 2a� b� 1, then jcmðpÞ em gjh ij � ð1þ
pÞmbj em gjh ij ! 0 and jdmðpÞ em gjh ij � pmbj em gjh ij ! 0 as m ! 1. Hence, the

series
P1

n¼1 f /njh i/n gj
� �

converges. Now we want to calculate values of a and b in

order f 62 DðS/Þ. A vector h 2 DðS/Þ if and only if for every g 2 H
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Z

X

h /xjh i /x gjh idlðxÞ
�
�
�
�

�
�
�
� ¼ M

X1

k¼1

h /kjh i/k gj
* +�

�
�
�
�

�
�
�
�
�
\1

i.e. if the series
P1

k¼1 h /kjh i/k weakly converges in H, however, if h ¼ f and

0\2a� 1� p\b the norm of sk goes to infinity as k ! 1.

As an example, if p ¼ 3 it can be a ¼ 17
8
and b ¼ 1

3
or, as in [14], p ¼ 2, a ¼ 8

5
and

b ¼ 1
2
.

Proposition 2.9 Let / : x 2 X ! /x 2 H and DðX/Þ be dense. Then the frame

operator S/ is closable.

Proof The sesquilinear form X/ is non-negative closed and densely defined, hence

the generalized frame operator T/ is self-adjoint. We conclude the proof by

recalling that S/ � T/. h

In the following sections we will use the next two lemmas.

Lemma 2.10 [11] Let H;K be Hilbert spaces. Let W : DðWÞ � K ! H a closed,
densely defined operator with closed range RðWÞ. Then, there exists a unique

Wy 2 BðH;KÞ such that

NðWyÞ ¼ RðWÞ?; RðWyÞ ¼ N ðWÞ?; WWyf ¼ f ; f 2 RðWÞ:

The operator Wy is called the pseudo-inverse of the operator W.

The following lemma is a partial variation of two Douglas majorization theorems

[18, Theorem 1, Theorem 2], see also [10].

Lemma 2.11 Let ðH; k � kÞ; ðH1; k � k1Þ and ðH2; k � k2Þ be Hilbert spaces and
T1 : DðT1Þ � H1 ! H, T2 : DðT2Þ � H ! H2 densely defined operators. Assume
that T1 is closed and DðT�

1 Þ ¼ DðT2Þ. Consider the following statements

(i) kT�
1 fk1 � kkT2fk2 for all f 2 DðT�

1 Þ and some k[ 0,

(ii) there exists a bounded operator U 2 BðH1;H2Þ such that T1 ¼ T�
2U.

Then ðiÞ ) ðiiÞ. If, in addition, T2 is a bounded operator on H, then ðiÞ , ðiiÞ and
both are equivalent to

(iii) RðT1Þ � RðT�
2 Þ.

3 Continuous weak A-frame and continuous atomic systems
for unbounded operators

In this section we introduce and study our extension to the continuous case of the

notions of discrete weak A-frame and discrete weak atomic system for a densely

defined operator A on a Hilbert space, given in [10].
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Definition 3.1 Let A be a densely defined operator on H. A continuous weak
A-frame for H is a function / : x 2 X ! /x 2 H such that for all u 2 DðA�Þ, the
map x ! u /xjh i is a measurable function on X and

akA�uk2 �
Z

X

j u /xjh ij2dlðxÞ\1;

for every u 2 DðA�Þ and some a[ 0.

Remark 3.2 If X ¼ N and l is the counting measure, a continuous weak A-frame

clearly reduces to a discrete weak A-frame in the sense of [10].

Remark 3.3 Let ðX;lÞ be a r-finite measure space. If A 2 BðHÞ, a continuous weak
A-frame is a continuous A-g-frame in the sense of [2, Definition 2.1] with Kx ¼
h /xjh i for every h 2 H, with x 2 X, since C/ is a bounded operator in that case (see

[2, Theorem 2.5]).

Remark 3.4 Let A be a densely defined operator on H and / : x 2 X ! /x 2
DðAÞ � H a continuous frame for H. Then A/ is a continuous weak A-frame for H.

Indeed, there exist constants a; b[ 0 such that

akA�uk2 �
Z

X

j A�u /xjh ij2dlðxÞ� bkA�uk2; 8u 2 DðA�Þ:

Example 3.5 Let X ¼ R2 and let l be the Lebesgue measure on R2. Let H ¼ L2ðRÞ
and let H1ðRÞ be the set of all functions f such that f ; f 0 2 L2ðRÞ and such that f is
absolutely continuous on every closed bounded interval ½a; b	 � R (see [30,

Appendix E]). Let us consider the differentiation operator Af ¼ �if 0 with domain

H1ðRÞ which is a self-adjoint operator of L2ðRÞ (see [30, Example 1.7]). Fix g 2
H1ðRÞ with kgk2 ¼ 1, then /g : ðs; tÞ 2 R2 ! L2ðRÞ defined by /gðs; tÞ ¼
�e2pit�ð2ptgð� � sÞ þ g0ð� � sÞÞ is a continuous weak A-frame for L2ðRÞ. Indeed,
let h 2 H1ðRÞ n f0g and consider Hhðf Þðt; sÞ ¼

R
R
f ðxÞhðx� sÞe�2pitxdx ¼

f /hðt; sÞjh i2, t; s 2 R, the short-time Fourier transform of f 2 L2ðRÞ with respect

to the window h, with /hðf Þ : R2 ! H1ðRÞ � L2ðRÞ defined by

/hðt; sÞ ¼ e2pit�hð� � sÞ, t; s 2 R, we have the well-known identity for any

f 2 L2ðRÞ, see [13, Proposition 11.1.2]
Z

R

Z

R

j f /hðs; tÞjh ij22 dsdt ¼ kfk22khk
2
2;

hence, if khk2 ¼ 1, then /h is a continuous Parseval frame in L2ðRÞ, see [12,

Example 4.3]. Hence, /g ¼ A/g is a continuous weak A-frame.

Example 3.6 Let X ¼ R and let l be the Lebesgue measure on R. Let H ¼ L2ð0; 1Þ,
H1ð0; 1Þ be the set of absolutely continuous functions f which are a.e. differentiable

and such that f 0 2 L2ð0; 1Þ and let Ið0;1Þ be the identity of L2ð0; 1Þ. Let us consider
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the differentiation operator Af ¼ �if 0 with domain H1ð0; 1Þ which is a densely

defined closed operator of L2ð0; 1Þ, see [30, Section 1.3]. The function / : t 2 R !
/t 2 L2ð0; 1Þ with /t ¼ 2pte2pit� I ð0;1Þ is a continuous weak A-frame for L2ð0; 1Þ.
Indeed, as proved in [12, Example 4.2], the function w : t 2 R ! wt 2 H1ð0; 1Þ �
L2ð0; 1Þ such that wt :¼ e2pit� I ð0;1Þ is a Parseval frame in L2ð0; 1Þ. Hence / ¼ Aw is

a continuous weak A-frame for L2ð0; 1Þ.

Proposition 3.7 Let A be a densely defined operator on H and / be a continuous
weak A-frame for H with lower bound a[ 0. If F 2 BðHÞ is such that the domain
DðAFÞ is dense, then / is a continuous weak AF-frame for H too, with lower bound

akF�k�2.

Proof By hypothesis there exists a[ 0 such that for every u 2 DðA�Þ

akA�uk2 �
Z

X

j u /xjh ij2dlðxÞ\1:

The adjoint ðAFÞ� is well defined and F�A� ¼ ðAFÞ� by [28, Theorem 13.2]. Hence,

for every u 2 DððAFÞ�Þ ¼ DðF�A�Þ

kðAFÞ�uk2 ¼kF�A�uk2 �kF�k2kA�uk2

� 1

a
kF�k2

Z

X

j u /xjh ij2dlðxÞ\1

since u 2 DðF�A�Þ ¼ DðA�Þ. h

If, in particular, F is also a unitary operator, then kF�k ¼ 1, hence / is a

continuous weak AF-frame for H with the same lower bound a.

Proposition 3.8 Let A be a self-adjoint operator and / : x 2 X ! /x 2 DðAÞ � H
a continuous weak A-frame forH with lower bound a, then A/ is a continuous weak

A2-frame for H with the same lower bound a. Moreover, if

/ : x 2 X ! /x 2
Tn

k¼1 DðAkÞ � H, then An/ is a continuous weak Anþ1-frame
for H, for every fixed n 2 N, with the same lower bound a. In particular, if / :

x 2 X ! /x 2
T

n2N DðAnÞ � H is a continuous weak A-frame for H with lower

bound a, then An/ is a continuous weak Anþ1-frame forH, for every n 2 N, with the
same lower bound a.

Proof By hypotheses A2 is self-adjoint with dense domain DðA2Þ � DðAÞ and there
exists a[ 0 such that for every f 2 DðAÞ

akAfk2 �
Z

X

j f /xjh ij2dlðxÞ\1:

Hence, for every h 2 DðA2Þ
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kA2hk2 ¼kAðAhÞk2 � 1

a

Z

X

j Ah /xjh ij2dlðxÞ

¼ 1

a

Z

X

j h A/xjh ij2dlðxÞ\1

since Ah 2 DðAÞ. Fix now an arbitrary n 2 N. If / : x 2 X ! /x 2 DðAnÞ � H,

then, as before, by hypotheses both An and Anþ1 are self-adjoint with dense domain

DðAnþ1Þ � DðAnÞ � DðAÞ and for every h 2 DðAnþ1Þ

kAnþ1hk2 ¼kAðAnhÞk2 � 1

a

Z

X

j Anh /xjh ij2dlðxÞ

¼ 1

a

Z

X

j h An/xjh ij2dlðxÞ\1

being Anh 2 DðAÞ. The last sentence in the Proposition is now obvious. h

The following definition sounds like [17, Definition 2.1] but here the operator is,

in principle, unbounded.

Definition 3.9 Let A be a densely defined operator and / : x 2 X ! /x 2 H, then a

function w : x 2 X ! wx 2 H is called a weak A-dual of / if

Af ujh i ¼
Z

X

hf jwxi /x ujh idlðxÞ; 8f 2 DðAÞ; u 2 DðA�Þ: ð3:1Þ

The weak A-dual w of / is not unique, in general.

Example 3.10 Let us see two examples. Let A be a densely defined operator on a

separable Hilbert space H.

(i) Let ðX; lÞ be a r-finite measure space and let fXngn2N be a covering of

X made up of countably many measurable disjoint sets of finite measure.

Without loss of generality we suppose that lðXnÞ[ 0 for every n 2 N. Let

feng � DðAÞ be an orthonormal basis of H and consider /, with

/x ¼ Aenffiffiffiffiffiffiffiffi
lðXnÞ

p , x 2 Xn; 8n 2 N, then / is a continuous weak A-frame, see

the first part of the proof of Theorem 3.19. One can take w with wx ¼ enffiffiffiffiffiffiffiffi
lðXnÞ

p ,

x 2 Xn; 8n 2 N.

(ii) If / :¼ Af, where f : x 2 X ! fx 2 DðAÞ � H is a continuous frame for H,

then one can take as w any dual frame of ffxg.

3.1 Frame-related operators of continuous weak A-frames

In this subsection we will establish some properties of the analysis, synthesis and

(generalized) frame operators of a continuous weak A-frame with A a densely
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defined operator. A theorem of characterization for a continuous weak A-frame is

also given.

Consider the sesquilinear form X/ defined in (2.3), then we can prove the

following

Proposition 3.11 Let A be a densely defined operator and / a continuous weak A-
frame, then DðA�Þ � DðX/Þ. Moreover, if A is closable, then X/ is densely defined.

Proof By hypotheses and definitions DðA�Þ � DðX/Þ. If A is closable, then DðA�Þ
is dense and this concludes the proof. h

However, in general DðA�Þ(DðX/Þ.

Corollary 3.12 Let A be a closable and densely defined operator, / a continuous
weak A-frame, then the synthesis operator C�

/ is closed.

Proof By Proposition 3.11, the domain DðC/Þ ¼ DðX/Þ of the closed operator C/

is dense, hence C�
/ is closed and densely defined. h

Remark 3.13 For what has been established until now, if A is closable and densely

defined and / is a continuous weak A-frame, by (2.4) the sesquilinear form X/ is a

densely defined, non-negative closed form. Then there exists the generalized frame

operator T/ of / defined as in (2.6) and the analysis operator C/ is closed and

densely defined. Moreover, one has

akA�uk2 �
Z

X

j u /xjh ij2dlðxÞ ¼ kC/uk22 ¼ T
1
2

/u
�
�
�

�
�
�
2

; 8u 2 DðA�Þ:

Corollary 3.14 Let A be a closable, densely defined operator, / a continuous weak
A-frame for H. Then the generalized frame operator T/ of / is self-adjoint and the
frame operator S/ is closable.

Proof By Proposition 3.11, the domain DðX/Þ is dense, hence the thesis follows by
Proposition 2.9. h

Proposition 3.15 Let A be densely defined and closable, A� injective and / a
continuous weak A-frame for H. Then C/ is injective on DðA�Þ.

Proof The proof is straightforward once observed that in our hypotheses

akA�fk2 �kC/fk22 for every f 2 DðA�Þ and some a[ 0. h

The following is a theorem of characterization for continuous weak A-frames.

Theorem 3.16 Let A be a closed densely defined operator and
/ : x 2 X ! /x 2 H. Then the following statements are equivalent.

(i) / is a continuous weak A-frame for H;
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(ii) for every u 2 DðA�Þ, the map x ! u /xjh i is a measurable function on X and
there exists a closed densely defined extension R of C�

/, with

DðR�Þ ¼ DðA�Þ, such that A ¼ RM for some M 2 BðH; L2ðX; lÞÞ.

Proof ðiÞ ) ðiiÞ Consider B : DðA�Þ ! L2ðX; lÞ given by ðBuÞðxÞ ¼ u /xjh i, 8u 2
DðA�Þ; x 2 X which is a restriction of the analysis operator C/. Since C/ is closed,

B is closable. B is also densely defined since DðA�Þ is dense.
We apply Lemma 2.11 to T1 :¼ A and T2 :¼ B noting that

kBuk22 ¼
R
X j u /xjh ij2dlðxÞ. There exists M 2 BðH; L2ðX; lÞÞ such that A ¼ B�M.

Then the statement is proved taking R ¼ B�, indeed R ¼ B� � C�
/ and DðRÞ 

DðC�
/Þ is dense because C/ is closed and densely defined. Note that we have

DðA�Þ ¼ DðR�Þ indeed DðR�Þ ¼ DðBÞ,

DðA�Þ � DðBÞ ¼ DðM�BÞ � DððB�MÞ�Þ ¼ DðA�Þ;

hence in particular B is closed.

ðiiÞ ) ðiÞ We have DðA�Þ ¼ DðR�Þ indeed

DðA�Þ � DðR�Þ ¼ DðM�R�Þ � DððRMÞ�Þ ¼ DðA�Þ:

For every u 2 DðA�Þ ¼ DðR�Þ

kA�uk2 ¼ kM�R�uk2 �kM�k2kR�uk2 ¼ kM�k2
Z

X

j u /xjh ij2dlðxÞ\1

being R� � C/. This proves that / is a continuous weak A-frame. h

3.2 Atomic systems for unbounded operators A and their relation with A-
frames

Now we define our generalization to the continuous case and to unbounded

operators of the notion of atomic system for K, with K 2 BðHÞ [22].

Definition 3.17 Let A be a densely defined operator on H. A continuous weak
atomic system for A is a function / : x 2 X ! /x 2 H such that for all u 2 DðA�Þ,
the map x ! u /xjh i is a measurable function on X and

(i)
R
X j u /xjh ij2dlðxÞ\1, for every u 2 DðA�Þ;

(ii) there exists c[ 0 such that, for every f 2 DðAÞ, there exists af 2 L2ðX; lÞ,

with kaf k2 ¼
R
X jaf ðxÞj

2
dlðxÞ

� �1=2

� ckfk and

Af ujh i ¼
Z

X

af ðxÞ /x ujh idlðxÞ; 8u 2 DðA�Þ: ð3:2Þ

Remark 3.18 If / is a continuous weak atomic system for a densely defined

operator A then, for every f 2 DðAÞ and for every u 2 DðA�Þ the function guf ðxÞ ¼
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af ðxÞ /x ujh i in (3.2) is l-integrable. Indeed it is absolutely integrable: fix any

f 2 DðAÞ, u 2 DðA�Þ, then by Schwarz inequality

Z

X

jaf ðxÞ /x ujh ijdlðxÞ� kaf k2
Z

X

j /x ujh ij2dlðxÞ
� 	1=2

\1;

where the last inequality follows from both conditions in Definition 3.17.

The next theorem guarantees the existence of continuous weak atomic systems

for densely defined operators on H.

Theorem 3.19 Let ðX; lÞ be a r-finite measure space. Let H be a separable Hilbert
space and A a densely defined operator on H. Then there exists a continuous weak
atomic system for A.

Proof Let fengn2N � DðAÞ be an orthonormal basis for H. Then, every f 2 H can

be written as f ¼
P1

n¼1 f enjh ien. For all n 2 N denote with /n ¼ Aen. Let fXngx2N
be a covering of X made up of countably many measurable disjoint sets of finite

measure. It is not restrictive supposing that lðXnÞ[ 0 for every n 2 N. Then we

define

/x :¼
/nffiffiffiffiffiffiffiffiffiffiffiffi
lðXnÞ

p ; x 2 Xn; n 2 N:

For every f 2 H the map x 2 X ! f /xjh i 2 C is measurable because it is a step

function.

Moreover, for every u 2 DðA�Þ

kA�uk2 ¼
X1

n¼1

A�u enjh ij j2¼
X1

n¼1

u Aenjh ij j2

¼
X1

n¼1

u /njh ij j2¼
X1

n¼1

Z

Xn

j u /xjh ij2dlðxÞ

¼
Z

X

j u /xjh ij2dlðxÞ\1:

Now, for all f 2 DðAÞ, take af as the step function defined as follows:

af ðxÞ :¼
f enjh i
ffiffiffiffiffiffiffiffiffiffiffiffi
lðXnÞ

p ; x 2 Xn; n 2 N:

Then, for all f 2 DðAÞ, af 2 L2ðX; lÞ, with

kaf k22 ¼
Z

X

jaf ðxÞj2dlðxÞ ¼
X1

n¼1

Z

Xn

f enjh ij j2

lðXnÞ
dlðxÞ

¼
X1

n¼1

j f enjh ij2 ¼ kfk2;

and for every f 2 DðAÞ, u 2 DðA�Þ
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Af ujh i ¼
X1

n¼1

f enjh iAen uj
* +

¼
X1

n¼1

f enjh i Aen ujh i

¼
X1

n¼1

Z

Xn

f enjh i
ffiffiffiffiffiffiffiffiffiffiffiffi
lðXnÞ

p
Aen ujh i
ffiffiffiffiffiffiffiffiffiffiffiffi
lðXnÞ

p dlðxÞ ¼
Z

X

af ðxÞ /x ujh idlðxÞ

Therefore / is a continuous weak atomic system for A. h

The following theorem gives a characterization of continuous weak atomic

systems for A and continuous weak A-frames.

Theorem 3.20 Let / : x 2 X ! /x 2 H and A be a closable densely defined
operator. Then the following statements are equivalent.

(i) / is a continuous weak atomic system for A;
(ii) / is a continuous weak A-frame;

(iii)
R
X j u /xjh ij2dlðxÞ\1 for every u 2 DðA�Þ and there exists a Bessel weak

A-dual w of /.

Proof ðiÞ ) ðiiÞ For every u 2 DðA�Þ by the density of DðAÞ we have

kA�uk ¼ sup
f2H;kfk¼1

A�u fjh ij j ¼ sup
f2DðAÞ;kfk¼1

A�u fjh ij j

¼ sup
f2DðAÞ;kfk¼1

j u Afjh ij

¼ sup
f2DðAÞ;kfk¼1

Z

X

af ðxÞ u /xjh idlðxÞ
�
�
�
�

�
�
�
�

� sup
f2DðAÞ;kfk¼1

Z

X

jaf ðxÞj2dlðxÞ
� 	1=2 Z

X

j u /xjh ij2dlðxÞ
� 	1=2

� c
Z

X

j u /xjh ij2dlðxÞ
� 	1=2

\1;

for some c[ 0, the last two inequalities are due to the fact that / is a continuous

weak atomic system for A.

ðiiÞ ) ðiiiÞ Following the proof of Theorem 3.16, there exists M 2
BðH; L2ðX; lÞÞ such that A ¼ B�M, with B : DðA�Þ ! L2ðX; lÞ a closable, densely

defined operator which is a restriction of the analysis operator C/.

By the Riesz representation theorem, for every x 2 X there exists a unique vector

wx 2 H such that ðMhÞðxÞ ¼ h wxjh i for every h 2 H. The function w : x 2 X !
wx 2 H is Bessel. Indeed,
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Z

X

j h wxjh ij2dlðxÞ ¼
Z

X

jðMhÞðxÞj2dlðxÞ

¼kMhk22 �kMk2L2khk
2; 8h 2 H:

Moreover, for f 2 DðAÞ; u 2 DðA�Þ ¼ DðBÞ

Af ujh i ¼ Af uj
� �

¼ B�Mf ujh i ¼ Mf B��ujh i2

¼ Mf Bujh i2¼
Z

X

f wxjh i /x ujh idlðxÞ:

ðiiiÞ ) ðiÞ It suffices to take af : x 2 X ! axðf Þ ¼ f wxjh i 2 C for all f 2 DðAÞ.
Indeed af 2 L2ðX; lÞ and, for some c[ 0, we have

R
X jaxðf Þj

2
dlðxÞ ¼

R
X j f wxjh ij2dlðxÞ� ckfk2 since w is a Bessel function. Moreover, by definition of

weak A-dual it is Af ujh i ¼
R
X af ðxÞ /x ujh idlðxÞ, for f 2 DðAÞ; u 2 DðA�Þ. h

The proof of Theorem 3.20 suggests the following

Proposition 3.21 Let D � H be dense, / : x 2 X ! /x 2 H be such that

(i) for every u 2 D, the map x ! u /xjh i is a measurable function on X

(ii)
R
X j u /xjh ij2dlðxÞ\1 for every u 2 D.

If M 2 BðH; L2ðX; lÞÞ and x 2 X denote by wx the unique vector of H such that
ðMhÞðxÞ ¼ h wxjh i for every h 2 H. Then, there exists a closed, densely defined
operator AM such that / is a continuous weak atomic system for AM and w : x 2
X ! wx 2 H is a Bessel function which is a weak AM-dual of /.

Proof Let us consider the operator B : D ! L2ðX; lÞ defined for every u 2 D by

ðBuÞðxÞ ¼ u /xjh i, 8x 2 X which is a restriction of the analysis operator C/. Since

B is densely defined, then B�, the adjoint of B, is well defined. Now fix any

M 2 BðH; L2ðX; lÞÞ, for every h 2 H and any x 2 X by the Riesz representation

theorem there exists a function w : x 2 X ! wx 2 H such that ðMhÞðxÞ ¼ h wxjh i.
By the same calculations than in Theorem 3.20, w is a Bessel function. Consider the

closed operator E ¼ B�M, then E�  M�B��  M�B and define F ¼ E�
�D ¼ M�B

which is closable and densely defined. Then DðF�Þ is dense and 8u 2 D ¼ DðFÞ
and 8h 2 DðF�Þ we have

F�h ujh i ¼ h Fujh i ¼ h M�Bujh i ¼ Mh Bujh i2

¼
Z

X

h wxjh i /x ujh idlðxÞ:

It suffices now to take AM ¼ F�. h

If RðAÞ is weakly decomposable, then RðA�Þ is weakly decomposable too, as

shown in the next Proposition.
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Proposition 3.22 Let A be a densely defined operator on H, / a continuous weak
atomic system for A and w a Bessel weak A-dual of /. Then, the adjoint A� of A
admits a weak decomposition and

A�u fjh i ¼
Z

X

u /xjh i wx fjh idlðxÞ; 8u 2 DðA�Þ; 8f 2 DðAÞ:

Proof Fix any u 2 DðA�Þ then, for every f 2 DðAÞ

A�u fjh i ¼ u Afjh i ¼
Z

X

hf jwxi /x ujh idlðxÞ

¼
Z

X

u /xjh ihwxjf idlðxÞ:

h

Remark 3.23 In the discrete case, i.e. for X ¼ N and l a counting measure, albeit a

strong decomposition of A is still not guaranteed in general, the adjoint A� admits a

strong decomposition [10, Remark 3.13], in the sense that

A�u ¼
X1

n¼1

huj/niwn; 8u 2 DðA�Þ

with fwng a Bessel weak A-dual of the weak A-frame f/ng.

Remark 3.24 Contrarily to the case in which the operator is in BðHÞ, given a closed
densely defined operator A on H and a continuous weak A-frame /, a weak A-dual
w of / is not a continuous weak A�-frame, in general. For example, if A is

unbounded and w is also a Bessel function, from the inequality

akAfk2 �
Z

X

j f wxjh ij2dlðxÞ; 8f 2 DðAÞ

with a[ 0, we obtain that A is bounded, a contradiction.

We conclude this section by proving that, under suitable hypotheses, we can

weakly decompose the domain of A� by means of a continuous weak A-frame.

Theorem 3.25 Let A be a closed densely defined operator with RðAÞ ¼ H and Ay
the pseudo-inverse of A. Let / be a continuous weak A-frame and w a Bessel weak

A-dual of /. Then, the function # with #x :¼ ðAyÞ�wx 2 H, for every x 2 X, is
Bessel and every u 2 DðA�Þ can be weakly decomposed as follows

h ujh i ¼
Z

X

hhj#xi /x ujh idlðxÞ 8h 2 H; u 2 DðA�Þ:
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Proof By Lemma 2.10 there exists a unique pseudo-inverse Ay 2 BðHÞ of A such

that h ¼ AAyh, h 2 H. Then,

h ujh i ¼ AAyh uj
D E

¼
Z

X

hAyhjwxi /x ujh idlðxÞ 8h 2 H; u 2 DðA�Þ:

Consider the adjoint ðAyÞ� 2 BðHÞ of Ay and define #x :¼ ðAyÞ�wx 2 H, for every

x 2 X. Then, for any h 2 H, we have

h ujh i ¼
Z

X

hhjðAyÞ�wxi /x ujh idlðxÞ

¼
Z

X

hhj#xi /x ujh idlðxÞ; 8u 2 DðA�Þ

and

Z

X

j h #xjh ij2dlðxÞ ¼
Z

X

h ðAyÞ�wx

�
�
�

D E�
�
�

�
�
�
2

dlðxÞ ¼
Z

X

Ayh wxj
D E�
�
�

�
�
�
2

dlðxÞ

� ckAyhk2 � ckAyk2khk2

for some c[ 0 since w is Bessel and Ay is bounded. Hence, # : x 2 X ! #x 2 H is

a Bessel function. h

Remark 3.26 In the discrete case the decomposition of the domain of DðA�Þ is

strong [10].

4 Continuous atomic systems for bounded operators
between different Hilbert spaces

In this section we introduce our second approach to the generalization of the notion

of (discrete) atomic system for K 2 BðHÞ and of K-frame in [22], to unbounded

operators in a Hilbert space in the continuous framework. A closed densely defined

operator in a Hilbert space A : DðAÞ ! H can be seen as a bounded operator

A : HA ! H between two different Hilbert spaces, with HA the Hilbert space

DðAÞ½k � kA	 where k � kA is the graph norm. Hence, before introducing new notions,

we put the main definitions and results in [2, 22] for K 2 BðHÞ in terms of bounded

operators from a Hilbert space into another. Later, in Sect. 4.1, we return to the

operator A : HA ! H.

Let H, J be two Hilbert spaces with inner products � �jh iH; � �jh iJ and induced

norms k � kH; k � kJ , respectively. We denote by BðJ ;HÞ the set of bounded linear

operators from J into H. For any K 2 BðJ ;HÞ we denote by K� 2 BðH;J Þ its

adjoint.

Definition 4.1 Let K 2 BðJ ;HÞ. The function / : x 2 X ! /x 2 H is a contin-

uous atomic system for K if for all h 2 H, the map x ! h /xjh iH is a measurable

function on X and

Continuous frames for unbounded operators Page 19 of 28    41 



(i) / is Bessel function

(ii) there exists c[ 0 such that for all f 2 J there exists af 2 L2ðX; lÞ, with

kaf k2 ¼
R
X jaf ðxÞj

2
dlðxÞ

� �1=2

� ckfkJ and for every g 2 H

Kf gjh iH¼
Z

X

af ðxÞ /x gjh iHdlðxÞ:

If J ¼ H and l is the counting measure, then the previous notion reduces to the

notion of atomic system for K 2 BðHÞ in [22].

Example 4.2 Let K 2 BðJ ;HÞ. Every continuous frame / for H is a continuous

atomic system for K. Indeed, if w is a dual frame of /, then for every h 2 H

Kf hjh iH¼
Z

X

Kf wxjh iH /x hjh iHdlðxÞ; 8f 2 J

and Definition 4.1 is satisfied by taking af ðxÞ ¼ Kf wxjh iH for f 2 J .

Example 4.3 Let K 2 BðJ ;HÞ and n : x 2 X ! nx 2 J a continuous frame for J
with dual frame # : x 2 X ! #x 2 J , then for all f ; g 2 J

f gjh iJ¼
Z

X

f #xjh iJ nx gjh iJ dlðxÞ;

hence, for every h 2 H

Kf hjh iH¼ f K�hjh iJ¼
Z

X

f #xjh iJ Knx hjh iHdlðxÞ:

Thus the function / ¼ Kn is a continuous atomic system for K, taking

af ðxÞ :¼ f #xjh iJ .

In the discrete case, the decomposition of RðKÞ, the range of K, is strong [10].

We give a result of existence of a continuous atomic system for a bounded

operator.

Theorem 4.4 Let ðX; lÞ be a r-finite measure space, J a separable Hilbert space
and K 2 BðJ ;HÞ. Then there exists a continuous atomic system for K.

Proof With the same notation than in Theorem 3.19 we have that
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Z

X

j h /xjh iHj
2
dlðxÞ ¼

X1

n¼1

Z

Xn

j h /xjh iHj
2
dlðxÞ ¼

X1

n¼1

h /njh iH
�
�

�
�2

¼
X1

n¼1

h Kenjh iH
�
�

�
�2¼

X1

n¼1

K�h enjh iJ
�
�

�
�2

¼kK�hk2J � kK�k2H;J khk
2
H;

where the last equality is due to the Parseval identity. The thesis follows from

Theorem 3.19, with slight modifications due to the fact that K 2 BðJ ;HÞ. h

Definition 4.5 Let K 2 BðJ ;HÞ. A function / : x 2 X ! /x 2 H is called a

continuous K-frame for H if for all h 2 H, the map x ! h /xjh iH is a measurable

function on X and there exist a; b[ 0 such that for every h 2 H

akK�hk2J �
Z

X

j h /xjh iHj
2
dlðxÞ� bkhk2H: ð4:1Þ

The constants a; b will be called frame bounds.

It is easy to see that if K 2 BðJ ;HÞ and / is a continuous frame for J , then K/
is a continuous K-frame for H. Then we give the following two examples.

Example 4.6 Let X ¼ R and let l be the Lebesgue measure. Let us identify J ¼
H ¼ L2ð0; 1Þ and let Ið0;1Þ be the identity of L2ð0; 1Þ. Fix any g 2 Cð0; 1Þ, the space
of continuous functions on the open interval (0, 1) (or also g 2 L1ð0; 1Þ the space of
essentially bounded functions on (0, 1)), and consider the self-adjoint operator Mg 2
BðL2ð0; 1ÞÞ defined by Mgf ¼ gf for every f 2 L2ð0; 1Þ. Then, /t :¼ ge2pit�I ð0;1Þ is a

continuous Mg-frame. Indeed, as proved in [12, Example 4.2], the function / : t 2
R ! /t 2 L2ð0; 1Þ such that /t :¼ e2pit�I ð0;1Þ is a Parseval frame in L2ð0; 1Þ, hence
/ ¼ Mg/ is a continuous Mg-frame.

Remark 4.7 If J ¼ H a continuous K-frame / is a continuous K-g-frame in the

sense of [2, Definition 2.1] with Kx ¼ f /xjh i for every f 2 H, with x 2 X. If

K 2 BðJ ;HÞ, X ¼ N and l is the counting measure, a continuous K-frame clearly

reduces to a discrete K-frame in the sense of [10] and, if in addition J ¼ H,

coincides with that of K-frame in [22].

Proposition 4.8 Let H, J and F be Hilbert spaces, K 2 BðJ ;HÞ, E 2 BðH;FÞ,
G 2 BðH;J Þ and / be a continuous K-frame for H, then

(i) E/ is a continuous EK-frame for F ;

(ii) / is a continuous KG-frame for H too.

Proof (i) It is a slight modification of the proof in [2, Theorem 3.4].

(ii) It descends from Proposition 3.7 with obvious adaptations. h

A natural consequence is the following corollary, see also [2, Corollary 3.5].
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Corollary 4.9 Let K 2 BðHÞ and / be a continuous K-frame forH, then / and Kn/
are continuous Knþ1-frames for H, for every integer n
 0.

Let us give a characterization of continuous atomic systems for operators in

BðJ ;HÞ.

Theorem 4.10 Let / : x 2 X ! /x 2 H and K 2 BðJ ;HÞ. Then the following are
equivalent.

(i) / is a continuous atomic system for K;
(ii) / is a continuous K-frame for H;

(iii) / is a Bessel function and there exists a Bessel function w : X ! J such
that

Kf hjh iH¼
Z

X

f wxjh iJ /x hjh iHdlðxÞ 8f 2 J ; 8h 2 H: ð4:2Þ

Proof The proof follows from Theorem 3.20, with suitable adjustments, recalling

that if / is a continuous K-frame for H, then it is a Bessel function. h

As in the discrete case,

Definition 4.11 Let K 2 BðJ ;HÞ and / : x 2 X ! /x 2 H a continuous K-frame

for H. A function w : X ! H as in (4.2) is called a K-dual of /.

Example 4.12 In general, a K-dual w : x 2 X ! wx 2 J of a continuous K-frame

/ : x 2 X ! /x 2 H is not unique. Let us see some examples.

(i) If / ¼ f, where f : X ! H is a continuous frame for H, then one can take

w ¼ K�n : X ! J where n : x 2 X ! nx 2 H is any dual frame of f.
(ii) If / ¼ Kf, where f : x 2 X ! fx 2 J is a continuous frame for J , then one

can take as w any dual frame of f.

Remark 4.13 Once at hand a continuous atomic system / for K, a Bessel K-dual
w : X ! J as in Theorem 4.10 is a continuous atomic system for K�. Indeed,

K�h fjh iJ¼ h Kfjh iH¼
Z

X

f wxjh iJ /x hjh iHdlðxÞ

¼
Z

X

h /xjh iH wx fjh iJ dlðxÞ; f 2 J ; h 2 H:

We apply Theorem 4.10 to K� and w to conclude that w is a continuous atomic

system for K�.

Following H.G. Feichtinger and T. Werther [21],

Definition 4.14 Let / : x 2 X ! /x 2 H be a Bessel function and H0 a closed

subspace ofH. The function / is called a continuous family of local atoms for H0 if

there exists a family of linear functionals fcxg with cx : H ! C for every x 2 X,
such that
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(i) exists c[ 0 with
R
X jcxðf Þj

2
dlðxÞ� ckfk2; 8f 2 H0;

(ii) f hjh i ¼
R
X cxðf Þ /x hjh idlðxÞ; 8f 2 H0; h 2 H.

We will say that the pair f/x; cxg provides an atomic decomposition forH0 and c
will be called an atomic bound of f/xg.

If now K ¼ PH0
2 BðHÞ is the orthogonal projection on H0 , i.e.

PH0
¼ P2

H0
¼ P�

H0
, a continuous PH0

-frame is a family of continuous local atoms

for H0, similarly to [22, Theorem 5].

Corollary 4.15 Let / : x 2 X ! /x 2 H be a Bessel function and H0 a closed
subspace of the Hilbert space H. Then the following statements are equivalent.

(i) f/xg is a family of continuous local atoms for H0;

(ii) / is a continuous atomic system for PH0
;

(iii) there exists a[ 0 such that akPH0
fk2 �

R
X j f /xjh ij2dlðxÞ, f 2 H;

(iv) there exists a Bessel function w : x 2 X ! wx 2 H such that

PH0
f hjh i ¼

Z

X

f wxjh i /x hjh idlðxÞ;

for any f ; h 2 H.

Not even if J ¼ H a Bessel function / : X ! H and a K-dual w : X ! H of its

are interchangeable, in general. However, if we strengthen hypotheses on K, it can
be proved the existence of a function with range in H which is interchangeable with

/ in the weak decomposition of RðKÞ � H, see also [2, Theorem 3.2].

Theorem 4.16 Let K 2 BðJ ;HÞ with closed range RðKÞ. Let / be a continuous K-
frame and w a Bessel K-dual of its. Then,

(i) the function # : x 2 X ! #x 2 H with #x :¼ ðKy
�RðKÞÞ

�wx 2 H, for every

x 2 X, is Bessel for RðKÞ and interchangeable with / for any h 2 RðKÞ, i.e.

h fjh iH¼
Z

X

h #xjh iH /x fjh iHdlðxÞ ¼
Z

X

h /xjh iH #x fjh iHdlðxÞ; f 2 H;

ii) # is a continuous K-frame for H and K�# and K�/ are Bessel K-duals of /
and of # respectively. In particular, for every h 2 H

Kf hjh iH¼
Z

X

f K�#xjh iJ /x hjh iHdlðxÞ

¼
Z

X

f K�/xjh iJ #x hjh iHdlðxÞ; 8f 2 J :

ð4:3Þ

Proof (i) See [2, Theorem 3.2] with obvious adjustments.

(ii) Clearly (4.3) follows from (i). The function # is a continuous K-frame for H
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by (i) and (4.3), taking for all f 2 J , af ðxÞ ¼ f K�/xjh iJ , for every x 2 X. The

functions K�# and K�/ are Bessel for J , indeed for all f 2 J , the maps x !

K
y
�RðKÞKf wxj

D E

J
¼ f K�#xjh iJ and x ! Kf /xjh iH¼ f K�/xjh iJ are measurable

functions on X and
Z

X

j f K�#xjh iJ j
2
dlðxÞ ¼

Z

X

j Kf #xjh iHj
2
dlðxÞ

� bkKfk2H � bkKk2J ;Hkfk
2
J ; 8f 2 J

for some b[ 0. Similarly, K�/ is Bessel. The proof is concluded by using Theo-

rem 4.10. h

Remark 4.17 Consider the function / : x 2 X ! /x 2 H. In this section the frame

operator S/ of / will be denoted by

S/f gj
� �

H¼
Z

X

f /xjh iH /x gjh iHdlðxÞ; f 2 DðS/Þ; g 2 H

where

DðS/Þ ¼ ff 2 H :

Z

X

f /xjh iH/xdlðxÞ converges weakly in Hg

Later on, in Remark 4.20, we will see that, as for continuous K-frames with

K 2 BðHÞ, the domain DðS/Þ of the frame operator of a continuous K-frame with

K 2 BðJ ;HÞ coincides with the whole H .

The analysis operator of the function / will be indicated by C/ : h 2 DðC/Þ �
H ! h /xjh iH2 L2ðX; lÞ strongly defined, for every h 2 DðC/Þ and for every x 2 X,

by

ðC/hÞðxÞ ¼ h /xjh iH

and the synthesis operator of / by C�
/ : DðC�

/Þ � L2ðX; lÞ ! H will be denoted by:

C�
/a hj

D E

H
¼

Z

X

aðxÞ /x hjh iHdlðxÞ; a 2 DðC�
/Þ; h 2 H

where

DðC�
/Þ :¼ a 2 L2ðX; lÞ :

Z

X

aðxÞ /x hjh iHdlðxÞ exists 8h 2 H
� �

:

We can characterize continuous K-frames forH by means of both their frame and

synthesis operators.
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Theorem 4.18 Let K 2 BðJ ;HÞ and / : x 2 X ! /x 2 H such that for all f 2 H,

the map x ! f /xjh i is a measurable function on X. Then the following statements
are equivalent.

(i) / is a continuous K-frame for H;

(ii) C�
/ is bounded and RðKÞ � RðC�

/Þ;
(iii) C�

/ is bounded and there exists M 2 BðJ ; L2ðX; lÞÞ such that K ¼ C�
/M;

(iv) S/ ¼ C�
/C/ 
 aKK� on H (i.e. S/f fj

� �
H 
 a KK�f fjh iH for every f 2 H)

for some a[ 0 and / is a Bessel function for H;

(v) K ¼ S
1=2
/

� �
U, for some U 2 BðJ ;HÞ.

Proof ðiÞ ) ðiiÞ The operator C�
/ is bounded by Proposition 2.5. Moreover, for

every h 2 H

akK�hk2J �
Z

X

j h /xjh iHj
2
dlðxÞ ¼ kC/hk22:

By Lemma 2.11, it follows that RðKÞ � RðC�
/Þ.

ðiiÞ ) ðiiiÞ By Lemma 2.11 there exists a bounded operator M : J ! L2ðX; lÞ
such that K ¼ C�

/M.

ðiiiÞ ) ðiÞ / is a continuous K-frame for H since

kK�hk2J ¼kM�C/hk2J � kM�k2L2;J kC/hk2J

¼kM�k2L2;J
Z

X

j h /xjh iHj
2
dlðxÞ� bkM�k2L2;J khk

2
H

by the boundedness of C/.

ðiÞ , ðivÞ See [2, Lemma 2.4] with Kx ¼ f /xjh i for every f 2 H, with x 2 X.
ðiÞ ) ðvÞ The operator S/ is positive, bounded and everywhere defined in H

because, by definition of continuous K-frame for H, there exists b[ 0 such that

0� S/f fj
� �

H¼
Z

X

j f /xjh iHj
2
dlðxÞ� bkfk2H; 8f 2 H:

Hence S/ ¼ S
1=2
/ S

1=2
/ , with S

1=2
/ positive self-adjoint operator and, by hypothesis,

there exists a[ 0 such that

akK�fk2H � S
1=2
/ f

�
�
�

�
�
�
2

H
; 8f 2 H:

By Lemma 2.11, there exists U 2 BðJ ;HÞ such that K ¼ S
1=2
/

� �
U:

ðvÞ ) ðiÞ By hypothesis there exists U 2 BðJ ;HÞ such that

K� ¼ S
1=2
/

� �
U

� ��
¼ U�S

1=2
/ , then, for every f 2 H
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kK�fk2J ¼ U�S
1=2
/ f

�
�
�

�
�
�
2

J
� U�k k2H;J S

1=2
/ f

�
�
�

�
�
�
2

H
� U�k k2H;J S

1=2
/

�
�
�

�
�
�
2

H;H
fk k2H;

hence / is a continuous K-frame for H. h

Remark 4.19 Nothing guarantees the closedness of RðC�
/Þ, then by Theorem 4.18

(iii) it follows that a continuous K-frame is not automatically a continuous frame for

the subspace spanf/xg, the closed linear span of f/xg, which is in turn a Hilbert

space, see [13, Corollary 5.5.2] for the discrete case.

Remark 4.20 As usual, the frame operator S/ of a continuous K-frame for H, with

K 2 BðJ ;HÞ, is a linear positive bounded operator in H, indeed S/ ¼ C�
/C/ with

C/ 2 BðH; L2ðX; lÞÞ, however, it is not invertible in general. Nevertheless, if we

strenghten the hypotheses on K and X, S/ can be invertible on its range. This has

been shown in the discrete case in [31, p. 1245]. The proof of the following

proposition is analogous to that given therein.

Proposition 4.21 Let / : x 2 X ! /x 2 H be a continuous K-frame for H with
K 2 BðJ ;HÞ having closed range. Then S/ is linear, bounded, self-adjoint, positive
and invertible on RðKÞ.

4.1 Continuous atomic systems for unbounded operators A and continuous A-
frames

The results of Sect. 4 can be used to generalize continuous frames for bounded

operators to the case of an unbounded closed and densely defined operator A :
DðAÞ ! H viewing it as a bounded operator between two different Hilbert spaces,

more precisely, from the Hilbert space HA ¼ DðAÞ½k � kA	, where k � kA is the graph

norm induced by the graph inner product � �jh iA, into H.

In order to simplify notations, we come back to denote again by � �jh i and k � k the

inner product and the norm of H, respectively.

We will indicate by A] : H ! HA the adjoint of the bounded operator

A : HA ! H. With this convention, if A 2 BðHA;HÞ, a function / : x 2 X ! /x 2
H such that for all f 2 H, the map x ! f /xjh i is a measurable function on X is said

to be

(i) a continuous atomic system for A if / is a Bessel function and there exists

c[ 0 such that for all f 2 DðAÞ there exists af 2 L2ðX; lÞ, with kaf k2 ¼
R
X jaf ðxÞj

2
dlðxÞ

� �1=2

� ckfkA and for every g 2 H

Af gjh i ¼
Z

X

af ðxÞ /x gjh idlðxÞ;

(ii) a continuous A-frame if there exist a; b[ 0 such that for every h 2 H
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akA]hk2A �
Z

X

j h /xjh ij2dlðxÞ� bkhk2:

Theorems 4.10 and 4.18 can be summarized and rewritten as follows.

Corollary 4.22 Let / : x 2 X ! /x 2 H and suppose that for all h 2 H, the map
x ! h /xjh i is a measurable function on X. Let A be a closed densely defined
operator on H. Then the following are equivalent.

(i) / is a continuous atomic system for A;
(ii) / is a continuous A-frame;
(iii) / is a Bessel function and there exists w a Bessel function of HA such that

Af hjh i ¼
Z

X

f wxjh iA /x hjh idlðxÞ; 8f 2 DðAÞ; 8h 2 H;

(iv) C�
/ is bounded and RðAÞ � RðC�

/Þ;
(v) C�

/ is bounded and there exists M 2 BðHA; L
2ðX; lÞÞ such that A ¼ C�

/M;

(vi) S/ ¼ C�
/C/ 
 aAA] on H, for some a[ 0 and / is a Bessel function for H;

(vii) A ¼ S
1=2
/

� �
U, for some U 2 BðHA;HÞ.

Note also that if A 2 BðHÞ, then the graph norm of A is defined on H and it is

equivalent to k � k, thus our notion of continuous A-frame reduces to that of

literature, see e.g. [2].
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Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link

to the Creative Commons licence, and indicate if changes were made. The images or other third

party material in this article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not included in the article’s

Creative Commons licence and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ali, S.T., Antoine, J.P., Gazeau, J.P.: Continuous frames in Hilbert space. Ann. Phys. 222, 1–37
(1993)

2. Alizadeh, E., Rahimi, A., Osgooei, E., Rahmani, M.: Continuous K-G-frame in Hilbert spaces. Bull.

Iran. Math. Soc. 45, 1091–1104 (2019)

Continuous frames for unbounded operators Page 27 of 28    41 

http://creativecommons.org/licenses/by/4.0/


3. Antoine, J-P., Balazs, P.: Frames and Semi-frames. J. Phys. A 44, 205201, 25 pp (2011)

4. Asgari, M.S., Rahimi, H.: Generalized frames for operators in Hilbert spaces. Infin. Dimens. Anal.

Quant. Probab. Relat. Top. 17(2), 1450013, 20 pp (2014)

5. Bagarello, F., Bellomonte, G.: Hamiltonians defined by biorthogonal sets. J. Phys. A 50, 145203,
20 pp (2017)

6. Bagarello, F., Bellomonte, G.: On non-self-adjoint operators defined by Riesz bases in Hilbert and

rigged Hilbert spaces, Topological algebras and their applications, 29–54. De Gruyter Proc. Math, De

Gruyter, Berlin (2018)

7. Bagarello, F., Inoue, A., Trapani, C.: Non-self-adjoint hamiltonians defined by Riesz bases. J. Math.

Phys. 55(3), 033501, 12 pp (2014)

8. Bagarello, F., Inoue, H., Trapani, C.: Biorthogonal vectors, sesquilinear forms, and some physical

operators. J. Math. Phys. 59(3), 033506, 13 pp (2018)

9. Bagarello, F., Inoue, H., Trapani, C.: Generalized Riesz systems and quasi bases in Hilbert space.

Mediterr. J. Math. 17, 41 (2020)

10. Bellomonte, G., Corso, R.: Frames and weak frames for unbounded operators. Adv. Comput. Math.

46, art. n. 38, 21 pp (2020)

11. Beutler, F.J., Root, W.L.: The operator pseudoinverse in control and systems identification. Gener-

alized inverses and applications (Proc. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis.,

1973), pp. 397–494. Publ. Math. Res. Center Univ. Wisconsin, No. 32, Academic Press, New York

(1976)

12. M. Bownik, Continuous frames and the Kadison-Singer problem Coherent states and their applica-

tions, 63-88, Springer Proc. Phys., 205, Springer, Cham, 2018

13. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic
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