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Abstract

Few years ago Gavruta gave the notions of K-frame and atomic system for a linear
bounded operator K in a Hilbert space H in order to decompose R (K), the range of
K, with a frame-like expansion. These notions are here generalized to the case of a
densely defined and possibly unbounded operator A on a Hilbert space in a con-
tinuous setting, thus extending what have been done in a previous paper in a discrete
framework.

Keywords Continuous A-frames - Continuous weak A-frames - Continuous
atomic systems - Unbounded operators
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1 Introduction

The notion of discrete frame was introduced by Duffin and Schaefer in 1952 [19]
even though it raised on the mathematical and physical scene in 1986 with the paper
of Daubechies, Grossmann, Meyer because of their use in wavelet analysis. In the
early "90s Ali, Antoine and Gazeau [1] and, independently, Kaiser [25] extended
this notion to the continuous case. Continuous frames have been deeply investigated
also in [27]. Over the years many extensions of frames have been introduced and
studied. Most of them have been considered in the discrete case because of their
wide use in applications e.g. in signal processing [19]. Frames have been studied for
the whole Hilbert space or for a closed subspace until 2012, when Gavruta [22] gave
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the notions of K-frame and of atomic system for a bounded operator K everywhere
defined on H, thus generalizing the notion of frame and that of atomic system for a
subspace due to Feichtinger and Werther [21]. K-frames allow to write each element
of R(K), the range of K, which is not a closed subspace in general, as a combination
of the elements of the K-frame, which do not necessarily belong to R(K) with
K € B(H). K-frames have been generalized in [4] and [23] where the notion of K-g-
frames was investigated and have been further generalized in 2018 to the continuous
case in [2].

Let H be a Hilbert space with inner product (-|-) and norm || - ||, (X, i) a measure
space where u is a positive measure and A a densely defined operator on H. Let
¢ :x € X — ¢, € H be a Bessel function, i.e. ¢ be such that for all f € H, the map
x — (f|¢,) is a measurable function on X and there exists a constant § > 0 such that
Jx [F|p )P du(x) < BIIf|I%, Vf € H. Assume that for f € D(A) (the domain of A) we
have the decomposition

(Afu) = / 4 (), Ju)du(x), Vu € D(A?)

for some ar € L*(X, u). If A is unbounded, the function ay can not depend contin-
uously on f, differently to what occurs when A is bounded. In order to decompose
the range of a densely defined unbounded operator A as a combination of vectors in
‘H, we need somewhat which takes on its unboundedness. In literature there are
some generalizations to the continuous case of the notion of K-frame, as e.g. c-K-g-
frames in [2]); however, as far as the author knows, the case of an unbounded
operator K in H has been little considered.

In [10] this problem has been addressed in the discrete case. In the present paper
both the approaches introduced in [10] are extended to the continuous setting. One
of the approaches involves a Bessel function ¢ and the coefficient function af
depends continuously on f € D(A) only in the graph topology of A, which is
stronger than the norm of H; the other one involves a non-Bessel function ¢ but the
coefficient function a; depends continuously on f € D(A). In the latter approach, the
notions of continuous weak A-frame and continuous weak atomic system for an
unbounded operator A are introduced and studied.

If ¢ : X — H is a continuous frame for H then of course

(Aflh) = / AFIC) (bl du(x), V€ D(A).h e H

where { : X — H is a dual frame of ¢. In contrast, if ¢ is a continuous weak A-
frame, then there exists a Bessel function y : X — H such that

(Ahlu) = / (hl) (duluddu(x), ¥h € D(A),u € D(A")

and the action of the operator A does not appear in the weak decomposition of the
range of A, see Theorem 3.20. Still, continuous weak A-frames clearly call to mind
continuous multipliers which are the object of interest of a recent literature even
though unbounded multipliers, as far the author knows, have been little looked over.
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For example, some initial steps toward this direction have been done, in the discrete
case, in [5-8, 24] where some unbounded multipliers have been defined. Therefore
this paper can spur investigation in the direction of unbounded multipliers in the
continuous case.

The paper is organized as follows. In Sect. 2 we recall some well known
definitions and introduce the generalized frame operator T, which is the operator
associated to a sesquilinear form defined by means of a function
¢ :x € X — ¢, € H.In Sect. 3 we introduce, prove the existence under opportune
hypotheses, and study the notions of continuous weak A-frame and continuous weak
atomic system for a densely defined operator A in a Hilbert space H. To go into
more detail, after having introduced and studied the notion of continuous weak A-
frame, Sect. 3.1 is devoted to the study of frame-related operators as the analysis,
synthesis and (generalized) frame operators of a continuous weak A-frame. In Sect.
3.2 the notion of continuous weak atomic system for an unbounded operator A in
Hilbert space H is given.

Under some hypotheses, this notion is equivalent to that of continuous weak A-
frame. Moreover, given a suitable function ¢ : x € X — ¢, € H, for every bounded
operator M € B(H, L*(X, jt)), an operator Ay can be constructed in order ¢ to be a
continuous weak atomic system for Ay,. Section 4 is devoted to the second approach
to the problem of decomposing the range of an unbounded operator in Hilbert space:
we consider a bounded operator K from a Hilbert space 7 into another one H and
give some results about both continuous K-frames and continuous atomic systems
for K and about their frame-related operators, then in Sect. 4.1, we use them to study
the case of an unbounded closed and densely defined operator A : D(A) — H
viewing it as a bounded one A : Hy — H, where H, is the Hilbert space obtained
by giving D(A) the graph norm.

2 Definitions and preliminary results

Throughout the paper we denote by H an infinite dimensional complex Hilbert
space with inner product (-|-) linear in the first entry and conjugate linear in the
second entry, and induced norm || -||. The term operator is used for a linear
mapping. Given an operator A, we denote its domain by D(A), its range by R(A)
and its adjoint by A*, if A is densely defined. By B(H) we denote the Banach space
of all bounded linear operators from H into H and by ||A|| the usual norm of the
operator A € B(H). We indicate by (X, 1) a measure space X with positive measure
U, sometimes we will require it is o-finite, i.e. X can be covered with at most
countably many measurable, possibly disjoint, sets {X,},.y of finite measure. For
brevity we indicate by L?(X, u) the class of all y-measurable functions f : X — C
such that

172 = / 1 (x) Pdp(x) < oo,

by identifying functions which differ only on a p-null subset of X.
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Let us briefly recall the notion of continuous frame, see e.g. [1, Definition 2.1],
[13, Definition 5.6.1].

Definition 2.1 A continuous frame for H is a function ¢ : x € X — ¢, € H for
which

(i) for all h € H, the map x — (h|¢,) is a measurable function on X (i.e. the
function ¢ is weakly measurable),
(ii) there exist constants o, f > 0 such that

] < / (Bl Pdu(x) < BIAIPE, Vi e H. 2.1)

The function ¢ is called a Bessel function if at least the upper condition in (2.1)
holds. If « = =1 then the function ¢ is called a Parseval frame.

The main feature of a frame, hence of a continuous frame too, is the possibility of
writing each vector of a Hilbert space as a sum of a infinite linear combination of
vectors in the space getting rid of rigidness of orthonormality of the vectors of a
basis and of the uniqueness of the decomposition, but still maintaining numerical
stability of the reconstruction and fast convergence. By a continuous frame it is
possible to represent every element of the Hilbert space by a reconstruction formula:
if $:x€X — ¢, €H is a continuous frame for the Hilbert space H, then any
h € 'H can be expressed as

h= / (bl i),

where } : x € X — , € H is a function called dual of ¢ and the integrals have to
be understood in the weak sense, as usual.

2.1 Frame-related operators and sesquilinear forms

In this section we recall the definitions of the main operators linked to a ¢ : x €
X — ¢, € H and prove some results about them. We want to drive the attention of
the reader on the fact that, in contrast with the discrete case where some results
involve strong convergence [10], in the continuous case we can prove our results
just in weak sense.

In the sequel we will briefly indicate the range {¢,}, .y of a function ¢ : x €
X — ¢, € H by {¢,}. Consider the function ¢ : x € X — ¢, € H and the set

pcy) = {nents [ 10g)Pautn <oo).

The operator Cy : h € D(Cy) C H — (h|¢,) € L*(X, ) strongly defined, for every
h € D(Cy) and for every x € X, by
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(Coh)(x) = (hldy) (2.2)

is called the analysis operator of the function ¢, borrowing the terminology from
frame theory.

Remark 2.2 In general the domain of Cy is not dense, hence CZ, is not well-defined.

An example of function whose analysis operator is densely defined can be found in
Example 2.8, where D(Cy) = D(Q,). Moreover, a sufficient condition for D(Cy) to
be dense in H is that ¢, € D(Cy) for every x € X, see [3, Lemma 2.3].

The next result will be often needed in Sect. 3. It is a part of Lemma 2.1 in [3];
there, {¢,} needs not to be total.

Proposition 2.3 Let ¢ : x € X — ¢, € H. The analysis operator Cy is closed.

If Cy is densely defined, let us calculate its adjoint operator: let a € D(CZ) with
D(Cy) ={a€ L*(X,p) : 3g € H such that (Cghla),= (h|g), Vh € D(Cy)}
(Cyaln) = (alcom,= [ a@uliant, neDicy)

hence Cj : D(C;;) C L*(X,p) — H is weakly defined by:

<qw§:4ww@wwm,aeowmhem%>

and is called the synthesis operator of the function ¢ where
D(C;‘)) = {a eL*(X,p): /(a(x)¢x|h>d,u(x) exists Vh € D(C¢)}.
X

Remark 2.4 Thus, if Cy is densely defined, then the synthesis operator Cj is a
densely defined closed operator.

Proposition 2.5 [20] The function ¢ : x € X — ¢, € H is Bessel with bound § > 0
if and only if the synthesis operator Cj is linear and bounded on L>(X, 1) with

1Cllr2 3 < V/B. Moreover, the analysis operator Cy is linear and bounded on 'H
with ||C 312 <V/B. More precisely

12
1C5 s = [Collyezs = M)(@m@Vwm) < VB

FeR|IflI=1

Extending to the continuous case [15], consider the set

o) = {r e [ 16160Pant0 <oo} = 2C,)

and the mapping Q4 : D(Qy) x D(Q4) — C defined by
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Qy(f.g) = / (F1bu)belg)du(x). (2.3)

Qg is clearly a non-negative symmetric sesquilinear form which is well defined for
every f,g € D(Qg) because of the Cauchy—Schwarz inequality. It is unbounded in
general. Moreover, since D(Qy) is the largest domain such that Qg is defined on
D(Qy) x D(Qy), it results that

Q4(f,8) = (Cof |Cyg),, Vf,8 € D(Cy) = D(Qy) (2.4)

where Cy is the analysis operator defined in (2.2). Since Cy is a closed operator, Q
is a closed non-negative symmetric sesquilinear form in H, see e.g. [26, Example
VIL.1.13]. Let us assume that D(Qg) is dense in H, then by Kato’s first represen-
tation theorem [26, Theorem VI.2.1] there exists a positive self-adjoint operator T
associated to the sesquilinear form Q4 on

D(Ty) ={f € DQ) :h = [ () (@uli)duto
is bounded on D(Qy) w.r. to || - ||}

(2.5)

defined by
Tyof :=h (2.6)

with A as in (2.5), & is uniquely determined because of the density of D(Q,). The
operator T, is the greatest one whose domain is contained in D(Qg4) and for which
the following representation holds

Qd)(fag) = <T¢lf|g>v f € D(Tqb)a g€ D(Ql/))

The set D(T,) is dense in D(Qy), see [26, p. 279]. Furthermore, by Kato’s second
representation theorem [26, Theorem VI.2.23], D(Qy) = ’D(Tglb/ 2) and

Q4(f,8) = <T;/2f‘T;/2g>, Vf,g € D(Qy)
and comparing with (2.4), we obtain Ty, = C;Cy = |CyI* on D(Ty).

Definition 2.6 The operator T : D(Ty) C H — H defined by (2.6) will be said the
generalized frame operator of the function ¢ : x € X — ¢, € H.

Given ¢ :x € X — ¢, € H, coherently with [3], the operator S, : D(Sy) C
‘H — 'H weakly defined by

(Suflg) = / (flb) (d,]8)du(), f € D(Sy) g € H

where

& Birkhauser
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D(Sy) ={f€H: /X(f|qu)¢x du(x) converges weakly in H}

is called the frame operator of ¢. It is a positive operator on its domain and
symmetric indeed for every f,g € D(Sy)

(sufle) = [ (16:(6.Js)autx) = / G du(x)
/ (16 (@1 du(x) = (f]Sug).

but non densely defined in general. If ¢ is a continuous frame for H, then the frame
operator Sy is a bounded operator in H, positive, invertible with bounded inverse,
see e.g. [1].

Remark 2.7 The generalized frame operator 7, and the frame operator Sy coincide
on D(S4) C D(Ty). If in particular ¢ is a continuous frame for , then Cy, Sy are
defined on the whole M and Cj, on the whole L*(X, u), see also [3], and T, =
C(’;C¢ =S4 on ‘H. However, in general, they are not the same operator, as the
following example shows.

Example 2.8 Let X be such that u(X) = oo and having a covering made up of a
countable collection {X,, }, of disjoint measurable subspaces of X each of measure
M > 0, H a separable Hilbert space and {e,},.y an orthonormal basis of H. Let
o> 1,6 >0 and define ¢ : x € X — ¢, € H with

b, = by = nle,, if x € Xop_1
: boy = (n4 1) (ens1 —en), if x € Xop.

Then

D(Qy) = {f €EH: inzﬁWIenHZ + i(ﬂ + D) (flenst — en>l2<<>0}

n=1

is dense. Indeed, consider the sequence {¢,},. C H, then for every m € N

ARSI Z/\qﬁmmdu)

because only two, three, or six terms in the series are different from zero, depending
on the value of m. Then span{¢.} = span{¢,} C D(Qy). On the other hand

(span{¢,})* C D(Qy), hence

H =span{¢,} & (span{¢,})" C D(Qy)

hence D(Qy) is dense in . We shall prove that there exists a f € D(T,) such that
f&D(Sy). Let fe€H be such that (fle,) =-; for every n € N, for a fixed

nl’

W Birkhiuser
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p €{1,2,...}. We want to calculate for which values of « and f§ such an f € H is in
D(Ty) \ D(Sy). For f € D(Qy) it has to be

R LR

n=1 n=1

‘ 3

2|07 — (n+ 1)

w2 (n+ 1)% (2.7)

1]

For p > f +% the first series in (2.7) converges, the second has general term that
behaves like ﬁ hence if p > o — l too, then the series converges. To be f €
D(Ty) the functional g € D(Qy) — fx<f|q’>x ) (¢,|g)du(x) has to be bounded. Take

any g € D(Qy), then [, {f|d,) (¢, lg)du(x) = M{> " (f|$,)b,lg)- Let us consider
the sequence of partial sums of the series Y .~ | (f|$,) P,

m—1

$2m—1 *Z(ﬂfﬁzn P20 1+Z<f|¢2n b2

=ae; + Z bu(p)en + cm(p)em
n=2

and

Som = ;<f|¢2n71>¢2n71 + ;<f|¢2n>¢2n

=ae; + Z bn(p)en + dm+1 (P)€m+1
n=2

with a = [1 +2%(1 — )] >0,

B b [(n— 1P —n’] (n+ 1)2“[11" —(n+1Y] n?
bnlp) = w win—1yF nP(n+1)° "

_m e+ 1) — (m+ 1Y)
n(p) =" dn(p), () = S

where b;(p) = fj,@aii + 0(5-%7) and dy(p) = = + 0(47). Forp > 2 + L and
p > 20 — 3 the sequence {b,(p)} belongs to £2. Moreover, for every g € D(Q¢) we
have that nf|(e,|g)| — 0, hence, if also p>20 — f — 1, then |c,(p){en|g)| < (1 +
p)mPllenlg)| — 0 and |d,(p){en|g)| <pmP|{en|g)| — 0 as m — oco. Hence, the
series (307 (f|¢,) d,|g) converges. Now we want to calculate values of o and f in
order f & D(Sy). A vector h € D(S,) if and only if for every g € H

& Birkhauser
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<0

gt

- ’M<i<h|¢k>¢k|g>

k=1

ie. if the series > .=, (h|¢;)P; weakly converges in H, however, if & =f and
0<20 — 1 — p<pf the norm of s; goes to infinity as k — oc.
As an example, if p = 3itcanbe « = Y and f = {or, asin [14], p = 2, « = $ and

p=

Proposition 2.9 Let ¢ :x € X — ¢, € H and D(Q,) be dense. Then the frame
operator Sy is closable.

Proof The sesquilinear form Q, is non-negative closed and densely defined, hence
the generalized frame operator T, is self-adjoint. We conclude the proof by
recalling that Sy C Ty. |

In the following sections we will use the next two lemmas.
Lemma 2.10 [11] Let H, K be Hilbert spaces. Let W : D(W) C K — 'H a closed,

densely defined operator with closed range R(W). Then, there exists a unique
wte B(H, K) such that

NWH =R, RWH = NW)S, wwir=7, FeRrwW).

The operator w is called the pseudo-inverse of the operator W.
The following lemma is a partial variation of two Douglas majorization theorems
[18, Theorem 1, Theorem 2], see also [10].

Lemma 211 Let (H,| - )),(Hi,| -1l,) and (Ha, || -|,) be Hilbert spaces and
T, :D(Ty) CHy — H, T : D(T») C H — H, densely defined operators. Assume
that T is closed and D(T}) = D(T»). Consider the following statements

@ TN < ATof ), for all f € D(TY) and some A > 0,

(i)  there exists a bounded operator U € B(H1, H,) such that Ty = T;U.
Then (i) = (ii). If, in addition, T, is a bounded operator on 'H, then (i) < (ii) and
both are equivalent to

(i) R(Ty) C R(T3).

3 Continuous weak A-frame and continuous atomic systems
for unbounded operators

In this section we introduce and study our extension to the continuous case of the

notions of discrete weak A-frame and discrete weak atomic system for a densely
defined operator A on a Hilbert space, given in [10].

W Birkhiuser
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Definition 3.1 Let A be a densely defined operator on H. A continuous weak
A-frame for H is a function ¢ : x € X — ¢, € H such that for all u € D(A*), the
map x — (u|¢,) is a measurable function on X and

A% < / [l b, Pdux) <oo,

for every u € D(A*) and some o > 0.

Remark 3.2 1f X = N and p is the counting measure, a continuous weak A-frame
clearly reduces to a discrete weak A-frame in the sense of [10].

Remark 3.3 Let (X, 1) be a o-finite measure space. If A € B(H), a continuous weak
A-frame is a continuous A-g-frame in the sense of [2, Definition 2.1] with A, =
(h|¢,) for every h € H, with x € X, since Cy is a bounded operator in that case (see
[2, Theorem 2.5]).

Remark 3.4 Let A be a densely defined operator on H and ¢ :x € X — ¢, €
D(A) C 'H a continuous frame for H. Then A¢ is a continuous weak A-frame for H.
Indeed, there exist constants o, § > 0 such that

dfA%ul? < / |(A%ulpy) Pdu(x) < BllA U], Vu € D(A").
X

Example 3.5 Let X = R? and let u be the Lebesgue measure on R>. Let H = L*(R)
and let H'(R) be the set of all functions f such that f,f’ € L*>(R) and such that fis
absolutely continuous on every closed bounded interval [a,b] C R (see [30,
Appendix E]). Let us consider the differentiation operator Af = —if’ with domain
H'(R) which is a self-adjoint operator of L*(R) (see [30, Example 1.7]). Fix g €
H'(R) with |gll, =1, then ¢, : (s,1) € R* — L*(R) defined by ¢,(s,1) =
—e?™ (2ntg(- — s) + g/(- — 5)) is a continuous weak A-frame for L?(R). Indeed,
let heH'(R)\{0} and consider ©y(f)(t,s) = [of(x)h(x — s)e > dx =
{flpn(t,5)),, t,s € R, the short-time Fourier transform of f € L*(R) with respect
to the window A&, with ¢,(f): R* — H'(R) C L*(R) defined by
¢, (t,s) = e "h(- —s), t,s € R, we have the well-known identity for any
f € L*(R), see [13, Proposition 11.1.2]

/ / [(F1n(s, 1) 2 disdr = [IF I 1I1,
RJR

hence, if ||h||, =1, then ¢, is a continuous Parseval frame in L*(R), see [12,
Example 4.3]. Hence, ¢, = A¢, is a continuous weak A-frame.

Example 3.6 Let X = R and let y be the Lebesgue measure on R. Let H = L?(0, 1),
H'(0, 1) be the set of absolutely continuous functions f which are a.e. differentiable
and such that f/ € L*(0,1) and let Z g ;) be the identity of L?(0, 1). Let us consider
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the differentiation operator Af = —if’ with domain H'(0, 1) which is a densely
defined closed operator of L*(0, 1), see [30, Section 1.3]. The function ¢ : t € R —
¢, € L*(0,1) with ¢, = 2mte*™™ I ;) is a continuous weak A-frame for L*(0, 1).
Indeed, as proved in [12, Example 4.2], the function i : t € R — , € H'(0,1) C
L*(0,1) such that y, := e*™" T o ) is a Parseval frame in L*(0, 1). Hence ¢ = Ay is
a continuous weak A-frame for L2(0, 1).

Proposition 3.7 Let A be a densely defined operator on H and ¢ be a continuous
weak A-frame for H with lower bound o > 0. If F € B(H) is such that the domain
D(AF) is dense, then ¢ is a continuous weak AF-frame for H too, with lower bound

|2
ol [
Proof By hypothesis there exists « > 0 such that for every u € D(A*)

Al < [ 1l )P dutx) <.
The adjoint (AF)” is well defined and F*A* = (AF)" by [28, Theorem 13.2]. Hence,
for every u € D((AF)") = D(F*A¥)

* 112 * A% 12 |2 A%, 112
[AF) ul[™ =[[F*A%u||” < [|F*[|7[|A"u]
1 *
< IFIR [ 1l )Pdute) <oc

since u € D(F*A*) = D(A*). O

If, in particular, F is also a unitary operator, then ||F*|| =1, hence ¢ is a
continuous weak AF-frame for H with the same lower bound o.

Proposition 3.8 Ler A be a self-adjoint operator and ¢ : x € X — ¢, € D(A) C H
a continuous weak A-frame for H with lower bound o, then A¢ is a continuous weak
A’-frame for H with the same lower bound o  Moreover, if
$p:xeX— ¢, €Ni_, DY) C H, then A"¢ is a continuous weak A""'-frame
for 'H, for every fixed n € N, with the same lower bound o. In particular, if ¢ :
x€X — ¢, € Nyen D(A") CH is a continuous weak A-frame for H with lower
bound o, then A" is a continuous weak A" -frame for H, for every n € N, with the
same lower bound o.

Proof By hypotheses A? is self-adjoint with dense domain D(A?) C D(A) and there
exists a > 0 such that for every f € D(A)

ﬂWWSAW%me<w

Hence, for every h € D(A?)

W Birkhiuser
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4% =Jaan)I* < 5 [ LAl Pauo)

— [ b0 ) Pan(x) <o

since Ah € D(A). Fix now an arbitrary n € N. If ¢ : x € X — ¢, € D(A") C H,
then, as before, by hypotheses both A" and A"*! are self-adjoint with dense domain
D(A"!) € D(A") C D(A) and for every h € D(A"H!)

A" B =[A(A") / (A"] ) Pdu(x)

-~ / {4476, Pau() <oc
X

being A"h € D(A). The last sentence in the Proposition is now obvious. O

The following definition sounds like [17, Definition 2.1] but here the operator is,
in principle, unbounded.

Definition 3.9 Let A be a densely defined operator and ¢ : x € X — ¢, € H, then a
function Y : x € X — . € H is called a weak A-dual of ¢ if

(Aflu) /<f|w (b Ju)du(x), Vf € D(A),ueD@AT).  (3.1)

The weak A-dual  of ¢ is not unique, in general.

Example 3.10 Let us see two examples. Let A be a densely defined operator on a
separable Hilbert space H.

(i) Let (X,u) be a o-finite measure space and let {X,},.\ be a covering of
X made up of countably many measurable disjoint sets of finite measure.
Without loss of generality we suppose that u(X,) > 0 for every n € N. Let
{en} CD(A) be an orthonormal basis of H and consider ¢, with

o, = A‘Z;( > x€X,,Vn €N, then ¢ is a continuous weak A-frame, see

the first part of the proof of Theorem 3.19. One can take ¥ with {, = \/%,
(X,
x € X,,Vn e N.

(ii)) If ¢ := A{, where { : x € X — {, € D(A) C H is a continuous frame for H,
then one can take as ¥ any dual frame of {(,}.

3.1 Frame-related operators of continuous weak A-frames

In this subsection we will establish some properties of the analysis, synthesis and
(generalized) frame operators of a continuous weak A-frame with A a densely
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defined operator. A theorem of characterization for a continuous weak A-frame is
also given.

Consider the sesquilinear form €, defined in (2.3), then we can prove the
following

Proposition 3.11 Let A be a densely defined operator and ¢ a continuous weak A-
frame, then D(A*) C D(Qy). Moreover, if A is closable, then Q is densely defined.

Proof By hypotheses and definitions D(A*) C D(Qy). If A is closable, then D(A*)
is dense and this concludes the proof. Ul

However, in general D(A*)CD(Qy).

Corollary 3.12 Let A be a closable and densely defined operator, ¢ a continuous
weak A-frame, then the synthesis operator Cy is closed.

Proof By Proposition 3.11, the domain D(Cy) = D(Q,) of the closed operator Cy,
is dense, hence CZ) is closed and densely defined. O

Remark 3.13 For what has been established until now, if A is closable and densely
defined and ¢ is a continuous weak A-frame, by (2.4) the sesquilinear form Qg is a
densely defined, non-negative closed form. Then there exists the generalized frame
operator Ty of ¢ defined as in (2.6) and the analysis operator Cy is closed and
densely defined. Moreover, one has

2
alA"ul < / [ul,) Pan(a) = lCoul3 = |

Tiu , YueDA").

Corollary 3.14 Let A be a closable, densely defined operator, ¢ a continuous weak
A-frame for H. Then the generalized frame operator Ty of ¢ is self-adjoint and the
frame operator Sy is closable.

Proof By Proposition 3.11, the domain D(Q) is dense, hence the thesis follows by
Proposition 2.9. O

Proposition 3.15 Let A be densely defined and closable, A* injective and ¢ a
continuous weak A-frame for H. Then Cy is injective on D(A*).

Proof The proof is straightforward once observed that in our hypotheses
al|A*f]|* < ||Cyf |15 for every f € D(A*) and some o > 0. O

The following is a theorem of characterization for continuous weak A-frames.

Theorem 3.16 Let A be a closed densely defined operator and
¢ :x € X — ¢, € H. Then the following statements are equivalent.

(1) ¢ is a continuous weak A-frame for H,
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(ii) for every u € D(A*), the map x — (u|,) is a measurable function on X and
there exists a closed densely defined extension R of C:;, with

D(R*) = D(A*), such that A = RM for some M € B(H,L*(X, n)).

Proof (i) = (ii) Consider B : D(A*) — L*(X, ) given by (Bu)(x) = (u|¢,), Vu €
D(A*),x € X which is a restriction of the analysis operator Cy. Since Cy is closed,
B is closable. B is also densely defined since D(A*) is dense.

We apply Lemma 2.11 to 7T,:=A and 7T,:=B noting that

|Bull; = [, |(u|¢p,)|*du(x). There exists M € B(H,L*(X,u)) such that A = B*M.
Then the statement is proved taking R = B*, indeed R = B* 2 C; and D(R) D
D(C(’;)) is dense because Cy is closed and densely defined. Note that we have
D(A*) = D(R*) indeed D(R*) = D(B),

D(A*) c D(B) = D(M*B) C D((B'M)") = D(A¥),

hence in particular B is closed.
(ii) = (i) We have D(A*) = D(R*) indeed

D(A*) C D(R*) = D(M'R*) C D((RM)") = D(A").
For every u € D(A*) = D(R*)

x. 112 % k112 %112 * 112 %112 2
[A%u]|™ = (MR ul|” < [| M7 R ul|” = [|M] /X|<u|¢>x>| du(x) <oo
being R* C Cy. This proves that ¢ is a continuous weak A-frame. U

3.2 Atomic systems for unbounded operators A and their relation with A-
frames

Now we define our generalization to the continuous case and to unbounded
operators of the notion of atomic system for K, with K € B(H) [22].

Definition 3.17 Let A be a densely defined operator on H. A continuous weak
atomic system for A is a function ¢ : x € X — ¢, € H such that for all u € D(A"),
the map x — (u|¢,) is a measurable function on X and

() [y [l du(x) <oo, for every u € D(A®);
(i) there exists y > 0 such that, for every f € D(A), there exists a; € L*(X, p),

with [larll, = (Jy lay (P au(x))' " <) ana

(Af|u) :/Xa.f(X)<¢x|M>du(x), Vu € D(AY). (3:2)

Remark 3.18 1If ¢ is a continuous weak atomic system for a densely defined
operator A then, for every f € D(A) and for every u € D(A”) the function gf(x) =
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(x)(¢,u) in (3.2) is p-integrable. Indeed it is absolutely integrable: fix any
f € D(A), u € D(A*), then by Schwarz inequality

12
[ o aiant) < ||af||2( / |<<¢>x|u>|2du<x>) <oc,

where the last inequality follows from both conditions in Definition 3.17.

The next theorem guarantees the existence of continuous weak atomic systems
for densely defined operators on H.

Theorem 3.19 Let (X, i) be a o-finite measure space. Let H be a separable Hilbert
space and A a densely defined operator on 'H. Then there exists a continuous weak
atomic system for A.

Proof Let {e,},cny, C D(A) be an orthonormal basis for H. Then, every f € H can
be written as f = >, (f|e,)e,. For all n € N denote with ¢, = Ae,. Let {X,}
be a covering of X made up of countably many measurable disjoint sets of finite
measure. It is not restrictive supposing that u(X,) > 0 for every n € N. Then we
define

P
w(X,)

For every f € H the map x € X — (f|¢,) € C is measurable because it is a step
function.
Moreover, for every u € D(A*)

J%ulP = > A'ulen) = 3wl
=l =3 [ 1l Pante)
= [ 10l ) <.

by =

, x€X,,neN.

Now, for all f € D(A), take ay as the step function defined as follows:

(Flex)

, x€X,,neN.
(X,

ag(x) =

—~
=
—

Then, for all f € D(A), a € L*(X, u), with

ot = [ o) = 3 [ Wl a0
=3 Ilenf = 1",

and for every f € D(A), u € D(A*)
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(Af |u) <Z(f|en Aen|u>
=Z<f|en><Aen|u>

(f len) Aen|u>
NTCANTS) du(x) = Xaf(x)<¢xlu>du(x)
Therefore ¢ is a continuous weak atomic system for A. O

The following theorem gives a characterization of continuous weak atomic
systems for A and continuous weak A-frames.

Theorem 3.20 Let ¢ :x € X — ¢, € H and A be a closable densely defined
operator. Then the following statements are equivalent.

(1) ¢ is a continuous weak atomic system for A,
(i) ¢ is a continuous weak A-frame;
(i) [y [(ulo,) *du(x) < oo for every u € D(A*) and there exists a Bessel weak

A-dual  of ¢.

Proof (i) = (ii) For every u € D(A*) by the density of D(A) we have

A%l = sup [{AWf) = sup (A%l
fEHR,|f|I=1 fED(A),|If|=1
= s |(lAn)
feD(A),|IflI=1
= / a7 () (ul b))
fE€DA),|If[|=1

< s ([lgra) - ([ 1uloPanco) "
= <u¢x>2du<x>)l/2<o07

for some y > 0, the last two inequalities are due to the fact that ¢ is a continuous
weak atomic system for A.

(ii) = (iii) Following the proof of Theorem 3.16, there exists M €
B(H,L*(X,p)) such that A = B*M, with B : D(A*) — L*(X, ) a closable, densely
defined operator which is a restriction of the analysis operator Cg.

By the Riesz representation theorem, for every x € X there exists a unique vector
Y, € H such that (Mh)(x) = (h|,) for every h € H. The function  : x € X —
¥, € H is Bessel. Indeed,
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[ 1) Pauco) = [ 1040 Pt
Ml < MU AR, e H.
Moreover, for f € D(A),u € D(A*) = D(B)
(Aflu) =(Aflu) = (B MFlu) = (MFIB"u),
=B}~ | ()6 udn)

(iif) = (i) It suffices to take af:x € X — a.(f) = (f|y,) € C for all f € D(A).
Indeed ar € L*(X,u) and, for some 7 >0, we have [, lac(f) Pdu(x) =
Jx [(F | )P du(x) < 7|lf||* since ¥ is a Bessel function. Moreover, by definition of
weak A-dual it is (Af|u) = [, ar(x)(¢,|uydu(x), for f € D(A),u € D(A*). O

The proof of Theorem 3.20 suggests the following
Proposition 3.21 Let D C 'H be dense, ¢ : x € X — ¢, € H be such that

(i) for every u € D, the map x — (u|¢,) is a measurable function on X
(i) [y |(uld)] du(x) <oo for every u € D.

If M € B(H,L*(X, 1)) and x € X denote by s the unique vector of H such that
(Mh)(x) = (h|y,) for every h € H. Then, there exists a closed, densely defined
operator Ay such that ¢ is a continuous weak atomic system for Ay and \ : x €
X — . € H is a Bessel function which is a weak Ay-dual of ¢.

Proof Let us consider the operator B : D — L*(X, u) defined for every u € D by
(Bu)(x) = (u|¢,), ¥x € X which is a restriction of the analysis operator Cy4. Since
B is densely defined, then B*, the adjoint of B, is well defined. Now fix any
M € B(H,L*(X,u)), for every h € H and any x € X by the Riesz representation
theorem there exists a function ¥ : x € X — , € H such that (Mh)(x) = (h|y,).
By the same calculations than in Theorem 3.20, y is a Bessel function. Consider the
closed operator E = B*M, then E* D M*B** D M*B and define F = E’FD = M*B
which is closable and densely defined. Then D(F*) is dense and Vu € D = D(F)
and Vh € D(F*) we have

(F*hlu) =(h|Fu) = (h|M*Bu) = (Mh|Bu),
- / () (i) A,

It suffices now to take Ay = F*. O

If R(A) is weakly decomposable, then R(A*) is weakly decomposable too, as
shown in the next Proposition.
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Proposition 3.22 Let A be a densely defined operator on 'H, ¢ a continuous weak
atomic system for A and \y a Bessel weak A-dual of ¢. Then, the adjoint A* of A
admits a weak decomposition and

(Aulf) = /}((“\%M%Wd#(x)» Vu € D(AY),Vf € D(A).

Proof Fix any u € D(A*) then, for every f € D(A)
(ATulf) =(ulAf) :/X<f|%><¢x|u>d#(x)
= [ Gl ).

O

Remark 3.23 1In the discrete case, i.e. for X = N and p a counting measure, albeit a
strong decomposition of A is still not guaranteed in general, the adjoint A* admits a
strong decomposition [10, Remark 3.13], in the sense that

0]

Au= (uld,),, VueDA)

n=1
with {y,} a Bessel weak A-dual of the weak A-frame {¢,}.

Remark 3.24 Contrarily to the case in which the operator is in B(H), given a closed
densely defined operator A on H and a continuous weak A-frame ¢, a weak A-dual
Y of ¢ is not a continuous weak A*-frame, in general. For example, if A is
unbounded and  is also a Bessel function, from the inequality

MWWSAWMWW®7WENM

with o > 0, we obtain that A is bounded, a contradiction.

We conclude this section by proving that, under suitable hypotheses, we can
weakly decompose the domain of A* by means of a continuous weak A-frame.

Theorem 3.25 Let A be a closed densely defined operator with R(A) = H and At
the pseudo-inverse of A. Let ¢ be a continuous weak A-frame and \y a Bessel weak

A-dual of ¢. Then, the function 9 with 9, := (A]L)*lﬁ)C € H, for every x € X, is
Bessel and every u € D(A*) can be weakly decomposed as follows

() = [ 419, lu)due) € Mo DA,
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Proof By Lemma 2.10 there exists a unique pseudo-inverse Al € B(H) of A such
that h = AATh, h € H. Then,

() = (AT = [ @TH) @ud)dnts) ¥ € Houe D)

Consider the adjoint (AJ[)* € B(H) of AT and define v, := (AT)*% € 'H, for every
x € X. Then, for any h € H, we have

(hlu) = / BIATY ) () da(x)
- / (W0,)(bulu)du(x), Vu € D(A?)
and

2
du(x)

[ roPant) = [ [(rfeatyu) anco = [ [(athiu)

<yl|ATRI> < y)aT|P )R

for some y > 0 since i/ is Bessel and AT is bounded. Hence, 9 :x € X — 9, € H is
a Bessel function. O

Remark 3.26 In the discrete case the decomposition of the domain of D(A*) is
strong [10].

4 Continuous atomic systems for bounded operators
between different Hilbert spaces

In this section we introduce our second approach to the generalization of the notion
of (discrete) atomic system for K € B(H) and of K-frame in [22], to unbounded
operators in a Hilbert space in the continuous framework. A closed densely defined
operator in a Hilbert space A : D(A) — H can be seen as a bounded operator
A :Hs — H between two different Hilbert spaces, with H, the Hilbert space
D(A)][|| - ||4] where || - ||, is the graph norm. Hence, before introducing new notions,
we put the main definitions and results in [2, 22] for K € B(H) in terms of bounded
operators from a Hilbert space into another. Later, in Sect. 4.1, we return to the
operator A : Hy — H.

Let H, J be two Hilbert spaces with inner products (-|-);, (:|-) ; and induced
norms || - ||, || - | 7, respectively. We denote by B(J,H) the set of bounded linear
operators from 7 into H. For any K € B(J,H) we denote by K* € B(H, J) its
adjoint.

Definition 4.1 Let K € B(J,H). The function ¢ : x € X — ¢, € H is a contin-
uous atomic system for K if for all 4 € H, the map x — (h|¢,),, is a measurable
function on X and
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(i) ¢ is Bessel function
(i)  there exists 7 > 0 such that for all f € J there exists a; € L*(X, p), with

1/2
laglls = (fi lar(Pdu()) " <3l and for every g € H

(KF[8)= / a7 (3) (|8 ().

If 7 = 'H and p is the counting measure, then the previous notion reduces to the
notion of atomic system for K € B(H) in [22].

Example 4.2 Let K € B(J,H). Every continuous frame ¢ for H is a continuous
atomic system for K. Indeed, if { is a dual frame of ¢, then for every h € H

(KF )= / KFW o) pii(x),  ¥F € T

and Definition 4.1 is satisfied by taking as(x) = (Kf|,),, for f € J.

Example 43 Let K € B(J,H) and ¢ : x € X — &, € J a continuous frame for J
with dual frame ¢ : x € X — ¥, € 7, then for all f,g € J

(flg) 5= / (F195) 5 (El8) 7 dn(),

hence, for every h € H

(Kf|h) = (FIK"h) 7= /X<f|19x>j<K€xlh>Hdu(X)~
Thus the function ¢ = K¢ is a continuous atomic system for K, taking
ag(x) := {f|0x) -

In the discrete case, the decomposition of R(K), the range of K, is strong [10].
We give a result of existence of a continuous atomic system for a bounded
operator.

Theorem 4.4 Let (X, i) be a o-finite measure space, J a separable Hilbert space
and K € B(J,H). Then there exists a continuous atomic system for K.

Proof With the same notation than in Theorem 3.19 we have that
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/\ (hl ) dn(x / P = S (bl

n=1

i|<hu<ew| = Sl Hen)

n=1 n=1

2 2 2
=Kl 7 < 1K [l3¢,7 1715

where the last equality is due to the Parseval identity. The thesis follows from
Theorem 3.19, with slight modifications due to the fact that K € B(J, H). O

Definition 4.5 Let K € B(J,H). A function ¢ :x € X — ¢, € H is called a
continuous K-frame for 'H if for all h € H, the map x — (h|¢,),, is a measurable
function on X and there exist o, f§ > 0 such that for every 7 € H

K< [ 10016, Pntx) < Bl (1)
X

The constants «, § will be called frame bounds.

It is easy to see that if K € B(J,H) and ¢ is a continuous frame for 7, then K¢
is a continuous K-frame for H. Then we give the following two examples.

Example 4.6 Let X = R and let u be the Lebesgue measure. Let us identify J =
H =L?(0,1) and let Z (o1 be the identity of L*(0, 1). Fix any g € C(0, 1), the space
of continuous functions on the open interval (0, 1) (or also g € L*>°(0, 1) the space of
essentially bounded functions on (0, 1)), and consider the self-adjoint operator M, €
B(L*(0,1)) defined by M,f = gf for every f € L*(0,1). Then, ¢, := ge*™" Ly ) is a
continuous M,-frame. Indeed, as proved in [12, Example 4.2], the function ¢ : t €
R — ¢, € L*(0,1) such that ¢, := ¢*™ Ty, is a Parseval frame in L?(0, 1), hence
¢ = M,¢ is a continuous M,-frame.

Remark 4.7 1f 7 = H a continuous K-frame ¢ is a continuous K-g-frame in the
sense of [2, Definition 2.1] with A, = (f|¢,) for every f € H, with x € X. If
K € B(J,H), X = N and p is the counting measure, a continuous K-frame clearly
reduces to a discrete K-frame in the sense of [10] and, if in addition J = H,
coincides with that of K-frame in [22].

Proposition 4.8 Let H, J and F be Hilbert spaces, K € B(J, H), E € B(H, F),
G € B(H,J) and ¢ be a continuous K-frame for H, then

(1) E¢ is a continuous EK-frame for F;
(ii)) ¢ is a continuous KG-frame for H too.
Proof (i) It is a slight modification of the proof in [2, Theorem 3.4].

(i) It descends from Proposition 3.7 with obvious adaptations. ([

A natural consequence is the following corollary, see also [2, Corollary 3.5].
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Corollary 4.9 Let K € B(H) and ¢ be a continuous K-frame for H, then ¢ and K" ¢
are continuous K"*'-frames for H, for every integer n>0.

Let us give a characterization of continuous atomic systems for operators in

B(J,H).

Theorem 4.10 Let p:x € X — ¢, € H and K € B(J, H). Then the following are
equivalent.

(i) ¢ is a continuous atomic system for K,
(i1) ¢ is a continuous K-frame for H;
(ili) ¢ is a Bessel function and there exists a Bessel function y : X — J such
that

(K k)= / (I (bulihpdu() F € TVREH.  (42)

Proof The proof follows from Theorem 3.20, with suitable adjustments, recalling
that if ¢ is a continuous K-frame for H, then it is a Bessel function. O

As in the discrete case,

Definition 4.11 Let K € B(J,H) and ¢ : x € X — ¢, € H a continuous K-frame
for H. A function ¥ : X — H as in (4.2) is called a K-dual of ¢.

Example 4.12 In general, a K-dual ¥ : x € X — {, € J of a continuous K-frame
¢ :x € X — ¢, € H is not unique. Let us see some examples.

(i) 1If ¢ =, where {: X — H is a continuous frame for H, then one can take
Y =K*¢:X — J where &:x € X — & € H is any dual frame of (.

(i) If¢ =K{ where{:x€ X — {, € J is a continuous frame for 7, then one
can take as Y any dual frame of (.

Remark 4.13 Once at hand a continuous atomic system ¢ for K, a Bessel K-dual
Y : X — J as in Theorem 4.10 is a continuous atomic system for K*. Indeed,

(KB =K )= 0T Tl o)
= [yl ), 7 e Tnen
We apply Theorem 4.10 to K* and i to conclude that i/ is a continuous atomic
system for K*.

Following H.G. Feichtinger and T. Werther [21],

Definition 4.14 Let ¢ :x € X — ¢, € H be a Bessel function and Hy a closed
subspace of H. The function ¢ is called a continuous family of local atoms for Hy if
there exists a family of linear functionals {c,} with ¢, : H — C for every x € X,
such that
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() exists y > 0 with [, |cx(f)[Pdpe(x) <p|lf[)%, ¥ € Ho;
(i) (flh) = [y cx(F)(dilh)du(x), Vf € Ho,h € M.

We will say that the pair {¢,, ¢, } provides an atomic decomposition for H, and y
will be called an atomic bound of {¢,}.

If now K =Py, € B(H) is the orthogonal projection on Hy , ie.
Py, = P%{O = Pj,,, a continuous Py, -frame is a family of continuous local atoms
for Hy, similarly to [22, Theorem 5].

Corollary 4.15 Let ¢ :x € X — ¢, € H be a Bessel function and Hy a closed
subspace of the Hilbert space H. Then the following statements are equivalent.

1) {¢,} is a family of continuous local atoms for Ho;
(i) ¢ is a continuous atomic system for Py;

(iii)  there exists o > 0 such that o||Pyf]||* < Jx [(flp )P du(x), f € H;
(iv)  there exists a Bessel function \y : x € X — . € ‘H such that

(Prof ) = / V) ol (),

for any f,h € 'H.

Not even if J = H a Bessel function ¢ : X — H and a K-dual y : X — H of its
are interchangeable, in general. However, if we strengthen hypotheses on K, it can
be proved the existence of a function with range in H which is interchangeable with
¢ in the weak decomposition of R(K) C H, see also [2, Theorem 3.2].

Theorem 4.16 Let K € B(J,H) with closed range R(K). Let ¢ be a continuous K-
frame and \y a Bessel K-dual of its. Then,

(1) the function ¥ :x € X — 9, € H with 9, := (K?-R(K))*wx € 'H, for every
x € X, is Bessel for R(K) and interchangeable with ¢ for any h € R(K), i.e.

()= / M0,y bo i) = / Bl (Ol pda(x), £ € T

ii) 4 is a continuous K-frame for H and K*¢ and K* ¢ are Bessel K-duals of ¢
and of ¥ respectively. In particular, for every h € H

(KF 1)y = / (1K 95) 7 (oo ) i)
X (4.3)

= IR Oun(a), v € 3.

Proof (i) See [2, Theorem 3.2] with obvious adjustments.
(if) Clearly (4.3) follows from (7). The function ¢} is a continuous K-frame for H
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by (i) and (4.3), taking for all f € J, as(x) = (f|[K*¢,) 7, for every x € X. The
functions K*1 and K*¢ are Bessel for 7, indeed for all f € 7, the maps x —

<K:R(K)Kf|¢x>j: (fIK*0y) 7 and x — (Kf|),)y= (f|K*},), are measurable
functions on X and
101K 00 Pau) = [ 14R710.) Pt
< BIIKF Il < BIKIZ sellfN, Vf € T

for some f > 0. Similarly, K*¢ is Bessel. The proof is concluded by using Theo-
rem 4.10. ]

Remark 4.17 Consider the function ¢ : x € X — ¢, € H. In this section the frame
operator S of ¢ will be denoted by

(Suf18)s, /mas (ul8hdu(),  fEDSy) g€ H

where

D(Sy) ={feH: /X(f|q’>x)Hd>xdu(x) converges weakly in H}

Later on, in Remark 4.20, we will see that, as for continuous K-frames with
K € B(H), the domain D(Sy) of the frame operator of a continuous K-frame with
K € B(J,H) coincides with the whole H .

The analysis operator of the function ¢ will be indicated by Cy : h € D(Cy) C
H — (h|$,)y € L*(X, 1) strongly defined, for every h € D(Cy) and for every x € X,
by

(Cyh)(x) = (hloy)y
and the synthesis operator of ¢ by Cj : D(C}) C L?(X, u) — H will be denoted by:

<c;;a\h>H= /X a(x) () du(x), a€D(C)), heH

where

D(Cy) == {a eL*(X,p) : /}(a(x)(d)x|h>Hd,u(x) exists Vh € H}.

We can characterize continuous K-frames for H by means of both their frame and
synthesis operators.
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Theorem 4.18 Let K € B(J,H) and ¢ : x € X — ¢, € H such that for all f € H,
the map x — (f|¢,) is a measurable function on X. Then the following statements
are equivalent.

(1) ¢ is a continuous K-frame for H;
(i)  Cj is bounded and R(K) C R(C});
(iii)  Cj, is bounded and there exists M € B(J, L>(X, n)) such that K = CyM;
(iv) Sy =CyCy=>0KK" on H (i.e <S¢f[f>H > a(KK*f|f)y, for every f € H)
for some o > 0 and ¢ is a Bessel function for H,

V) K= (S;ﬂ) U, for some U € B(J,H).

Proof (i) = (ii) The operator Cj is bounded by Proposition 2.5. Moreover, for
every h € H

A KHP < / (Bl o) Pdux) = 1o

By Lemma 2.11, it follows that R(K) C R(C}).

(ii) = (iii) By Lemma 2.11 there exists a bounded operator M : 7 — L*(X, u)
such that K = CyM.

(iii) = (i) ¢ is a continuous K-frame for H since
2 2
|L2,J||Cth|‘j

—M I, / (Rl b,y 2dux) < BIMY |

%7 (12 * 2 *
||K h”j :”M Cd’hHJS ||M

by the boundedness of Cy.
(i) & (iv) See [2, Lemma 2.4] with A, = (f|¢,) for every f € H, with x € X.
(i) = (v) The operator S, is positive, bounded and everywhere defined in H
because, by definition of continuous K-frame for H, there exists § > 0 such that

0< (Suflf) = / (716 Pdu(x) < BIFIE,  ¥F € H.

Hence Sy = S;)/ 2S(li)/ *, with S:ﬁ/ : positive self-adjoint operator and, by hypothesis,

there exists o« > 0 such that
2
AlKFIG <8y, v e

By Lemma 2.11, there exists U € B(J,H) such that K = (S(l/z) U.
(v) = (i) By hypothesis there exists U € B(J,H) such that
K" = ((S;/z) U) = U*S(lp/z, then, for every f € 'H
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2 2 2
K2 = HU*SUZ H < lU*|12 Hsl/z H < \U*|12 Hsl/zH 27
1K1 = || 07|, < N0 | 837, <107 |85, A1
hence ¢ is a continuous K-frame for H. O

Remark 4.19 Nothing guarantees the closedness of R(CZ) then by Theorem 4.18
(iii) it follows that a continuous K-frame is not automatically a continuous frame for
the subspace span{¢,}, the closed linear span of {¢,}, which is in turn a Hilbert
space, see [13, Corollary 5.5.2] for the discrete case.

Remark 4.20 As usual, the frame operator S, of a continuous K-frame for H, with
K € B(J,H), is a linear positive bounded operator in #, indeed Sy = C;)C¢ with
Cy € B(H,L*(X, ), however, it is not invertible in general. Nevertheless, if we
strenghten the hypotheses on K and X, S, can be invertible on its range. This has
been shown in the discrete case in [31, p. 1245]. The proof of the following
proposition is analogous to that given therein.

Proposition 421 Let ¢ :x € X — ¢, € H be a continuous K-frame for H with
K € B(J,H) having closed range. Then Sy is linear, bounded, self-adjoint, positive
and invertible on R(K).

4.1 Continuous atomic systems for unbounded operators A and continuous A-
frames

The results of Sect. 4 can be used to generalize continuous frames for bounded
operators to the case of an unbounded closed and densely defined operator A :
D(A) — H viewing it as a bounded operator between two different Hilbert spaces,
more precisely, from the Hilbert space Hs = D(A)][]| - ||4]. where || - ||, is the graph
norm induced by the graph inner product (-|-),, into H.

In order to simplify notations, we come back to denote again by (-|-) and || - || the
inner product and the norm of H, respectively.

We will indicate by Af:7H — H, the adjoint of the bounded operator
A : Hy — H. With this convention, if A € B(H4,H), a function ¢ : x € X — ¢, €
H such that for all f € H, the map x — (f|¢,) is a measurable function on X is said
to be

(i) a continuous atomic system for A if ¢ is a Bessel function and there exists

7 > 0 such that for all f € D(A) there exists ay € L*(X, ), with ||az, =

1/2
(Jilar()Pdu(x)) " <31l and for every g € H

(Aflg) = / a7 () (bulg) A (v):

(i1)  a continuous A-frame if there exist o, § > 0 such that for every h € H
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|l A% < / [ (hlby) Paa(c) < Bl

Theorems 4.10 and 4.18 can be summarized and rewritten as follows.

Corollary 422 Let ¢ : x € X — ¢, € H and suppose that for all h € 'H, the map
x — (h|¢p,) is a measurable function on X. Let A be a closed densely defined
operator on 'H. Then the following are equivalent.

(i) ¢ is a continuous atomic system for A,
(i1) ¢ is a continuous A-frame;
(iii) ¢ is a Bessel function and there exists  a Bessel function of Ha such that

(Aflh) = / (W a (buli)du(x),  ¥f € D(A), Vh € H;

(iv)  Cj is bounded and R(A) C R(Cy);
(v)  Cj is bounded and there exists M € B(Ha,L*(X, 1)) such that A = CyM;
(vi) Sy = C:;C¢ > 0AA* on H, for some o > 0 and ¢ is a Bessel function for H;

(vii)) A= (Sipﬂ) U, for some U € B(Ha, H).

Note also that if A € B(H), then the graph norm of A is defined on H and it is
equivalent to || - ||, thus our notion of continuous A-frame reduces to that of
literature, see e.g. [2].
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