Inspired by work of Scheepers and Tall, we use properties defined by topological games to provide bounds for the cardinality of topological spaces. We obtain a partial answer to an old question of Bell, Ginsburg and Woods regarding the cardinality of weakly Lindel¨of first-countable regular spaces and answer a question recently asked by Babinkostova, Pansera and Scheepers. In the second part of the paper we study a game-theoretic version of cellularity, a special case of which has been introduced by Aurichi. We obtain a game-theoretic proof of Shapirovskii’s bound for the number of regular open sets in an (almost) regular space and give a partial answer to a natural question about the productivity of a game strengthening of the countable chain condition that was introduced by Aurichi. As a final application of our results we prove that the Hajnal-Juh´asz bound for the cardinalityof a first-countable ccc Hausdorff space is true for almost regular (non-Hausdorff) spaces

BELLA, A., & SPADARO, S.D. (2015). Infinite games and cardinal properties of topological spaces. HOUSTON JOURNAL OF MATHEMATICS, 41(3), 1063-1077.

Infinite games and cardinal properties of topological spaces

SPADARO, SANTI DOMENICO
2015

Abstract

Inspired by work of Scheepers and Tall, we use properties defined by topological games to provide bounds for the cardinality of topological spaces. We obtain a partial answer to an old question of Bell, Ginsburg and Woods regarding the cardinality of weakly Lindel¨of first-countable regular spaces and answer a question recently asked by Babinkostova, Pansera and Scheepers. In the second part of the paper we study a game-theoretic version of cellularity, a special case of which has been introduced by Aurichi. We obtain a game-theoretic proof of Shapirovskii’s bound for the number of regular open sets in an (almost) regular space and give a partial answer to a natural question about the productivity of a game strengthening of the countable chain condition that was introduced by Aurichi. As a final application of our results we prove that the Hajnal-Juh´asz bound for the cardinalityof a first-countable ccc Hausdorff space is true for almost regular (non-Hausdorff) spaces
BELLA, A., & SPADARO, S.D. (2015). Infinite games and cardinal properties of topological spaces. HOUSTON JOURNAL OF MATHEMATICS, 41(3), 1063-1077.
File in questo prodotto:
File Dimensione Formato  
Infinite games and cardinal properties of topological spaces.pdf

accesso aperto

Tipologia: Pre-print
Dimensione 192.39 kB
Formato Adobe PDF
192.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10447/480950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact