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INFINITE GAMES AND CARDINAL PROPERTIES OF

TOPOLOGICAL SPACES

ANGELO BELLA AND SANTI SPADARO

Abstract. Inspired by work of Scheepers and Tall, we use properties defined by
topological games to provide bounds for the cardinality of topological spaces. We
obtain a partial answer to an old question of Bell, Ginsburg and Woods regarding
the cardinality of weakly Lindelöf first-countable regular spaces and answer a ques-
tion recently asked by Babinkostova, Pansera and Scheepers. In the second part of
the paper we study a game-theoretic version of cellularity, a special case of which
has been introduced by Aurichi. We obtain a game-theoretic proof of Shapirovskii’s
bound for the number of regular open sets in an (almost) regular space and give
a partial answer to a natural question about the productivity of a game strength-
ening of the countable chain condition that was introduced by Aurichi. As a final
application of our results we prove that the Hajnal-Juhász bound for the cardinality
of a first-countable ccc Hausdorff space is true for almost regular (non-Hausdorff)
spaces.

1. Introduction

One of the main inspirations for our work is the celebrated theorem of Arhangel’skii,
which in 1969 solved a forty years old problem of Alexandroff and Urysohn.

Theorem 1.1. (Arhangel’skii’s Theorem) If X is a first-countable Lindelöf space,
then |X| ≤ 2ℵ0.

The importance of this result is witnessed by the wealth and variety of generaliza-
tions that have been offered of it.

Very soon after the publication of his paper, Arhangel’skii himself asked whether
Theorem 1.1 remains true if the condition of first-countability is relaxed to the re-
quirement that all points are Gδ. This turned out to be a difficult problem and it was
eventually solved by Saharon Shelah in [13] in the negative. Later on, Isaac Gorelic
found a simpler counterexample. He constructed a model of ZFC where CH holds, 2ℵ1

can be arbitrarily large and there exists a zero-dimensional Lindelöf space with points
Gδ and cardinality 2ℵ1 . However, it is still an open question whether the cardinality
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2 ANGELO BELLA AND SANTI SPADARO

of a Lindelöf Hausdorff space with points Gδ is always bounded by 2ℵ1 . Arhangel’skii
proved that the cardinality of every Lindelöf T1 space of countable pseudocharacter
is less than the first measurable cardinal, while Juhász constructed examples of Lin-
delöf T1 spaces with countable pseudocharacter of arbitrarily large cardinality below
the first measurable. However, it is still unknown whether the cardinality of every
Lindelöf first-countable T1 space is bounded by the continuum.

Scheepers and Tall recently provided a new partial positive solution to Arhangel’skii’s
problem by using infinite games. To present it, we need to fix some notation. Let α
be an ordinal and A and B be collection of sets. The symbol Gα

1 (A,B) (respectively,
Gα

fin(A,B)) denotes the game of length α played by two players 1 and 2 in the fol-
lowing way: at the β-inning player 1 choose Uβ ∈ A and player 2 responds by taking
an element Vβ ∈ Uβ (respectively, a finite set Vβ ⊆ Uβ). Player 2 wins if and only if
{Vβ : β < α} ∈ B (respectively,

⋃
{Vβ : β < α} ∈ B).

Given a topological space X , we denote by OX the set of all open covers of X .
In [14] Scheepers and Tall focus on the game Gω1

1 (OX ,OX). It is evident that if
the cardinality of X does not exceed ℵ1, then player two has a winning strategy in
Gω1

1 (OX ,OX). It is also not hard to see that if X = 2ω1 then player one has a winning
strategy in Gω1

1 (OX ,OX). One of the main results of Scheeper and Tall’s paper [14]
is the following variant of Arhangel’skii’s Theorem.

Theorem 1.2. (Scheepers and Tall, [14]) Let X be a space of countable pseudochar-
acter such that player two has a winning strategy in Gω1

1 (OX ,OX). Then |X| ≤ 2ℵ0.

Another important generalization of Arhangel’skii’s Theorem was proposed by Bell,
Ginsburg and Woods in 1978. Recall that a space X is weakly Lindelöf if every open
cover has a countable subcollection whose union is dense in X . The class of weakly
Lindelöf spaces is much more general than the class of Lindelöf spaces and includes
the class of all spaces with the countable chain condition.

Theorem 1.3. (Bell, Ginsburg and Woods, [4]) Let X be a weakly Lindelöf first-
countable normal space. Then |X| ≤ 2ℵ0.

The question of whether normality can be relaxed to regularity in the above theorem
is still open.

Question 1.4. ([4]) Is the cardinality of every regular first-countable weakly Lindelöf
space bounded by the continuum?

We will offer a partial answer to this question by using a game-theoretic variant of
weak Lindelöfness.

Other attempts have focused on extending Arhangel’skii’s Theorem to the realm
of non-regular spaces.

Recall that a space X is called H-closed if every open cover has a finite subfamily
whose union is dense in X and is called almost Lindelöf if for every open cover U
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of X there is a countable collection V ⊂ U such that
⋃
{V : V ∈ V} = X . It is

easy to realize that every regular almost Lindelöf space is Lindelöf and every regular
H-closed space is compact, but these are strict weakenings of Lindelöfness in the
non-regular realm. Obviously, every H-closed space is almost-Lindelöf. Recall that a
space X is called Urysohn if for every pair of distinct points x, y ∈ X there are open
neighbourhoods U of x and V of y such that U ∩ V = ∅.

Theorem 1.5. (Bella and Cammaroto, [2]) Let X be an almost Lindelöf Urysohn
first-countable space. Then |X| ≤ 2ℵ0.

Theorem 1.6. (Gryzlov, [7]) If X is a first-countable H-closed space then |X| ≤ 2ℵ0.

The obvious common generalization of Theorems 1.5 and 1.6 was later disproved
by Bella ad Yaschenko in [5], where the authors construct first-countable Hausdorff
almost Lindelöf spaces of arbitrarily large cardinality.

By considering a game-theoretic variant of the almost Lindelöf property we will be
able to relax the first-countability condition in Theorem 1.5 while Theorem 1.6 will
be key in disproving a conjecture of Babinkostova, Pansera and Scheepers regarding
another game-theoretic strengthening of the same property.

The interested reader can find more on variants of Arhangel’skii’s Theorem in
Richard Hodel’s survey paper [9].

One of the most important cardinal invariants in topology is the cellularity, that
is the supremum of sizes of families of pairwise disjoint non-empty open sets in a
topological space. This cardinal invariant is featured in many cardinal bounds in
Juhász’s book [10] and has stimulated much research on the border between topology
and set theory.

Leandro Aurichi [1] recently introduced a natural game strengthening of countable
cellularity and discussed its productive behavior. Considering higher cardinal versions
of his game will allow us to give a game-theoretic proof of Shapirovskii’s bound on
the number of regular open sets, improve Aurichi’s results on products and show that
the Hajnal-Juhász bound on the cardinality of a first-countable ccc space is true for
almost regular non-Hausdorff spaces. We finish by showing that this last bound is not
true for T1 spaces, even if the countable chain condition is strengthened to Aurichi’s
game version of it.

For notation and terminology we refer to [6].

2. Variants of Arhangel’skii’s Theorems

Given a topological space X we denote by DX the collection of all families of open
sets U such that

⋃
U is dense in X and by OX the collection of all families of open

sets U such that {U : U ∈ U} covers X .
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Recall that a space X is said to be almost regular if the collection of all non-empty
regular closed sets is a π-network for X , that is, for every non-empty open set U ⊂ X
there is a non-empty open set V such that V ⊂ U . Every regular space is clearly
almost regular.

The closed pseudocharacter of X (ψc(X)) is defined as the least cardinal κ such
that for every x ∈ X there is a family U of open neighbourhoods of X such that⋂
{V : V ∈ V} = {x}.

Theorem 2.1. Let X be a space of countable closed pseudocharacter (in particular, a
first-countable Hausdorff space). If player two has a winning strategy in Gω1

1 (OX ,OX)
then |X| ≤ 2ℵ0.

Theorem 2.2. Let X be a first-countable almost regular space. If player two has a
winning strategy in Gω1

1 (OX ,DX) then |X| ≤ 2ℵ0.

The proofs of Theorems 2.1 and 2.2 have been clumped together since they are
very similar.

Proof. For every x ∈ X fix a family {Uα(x) : α < c} at x witnessing the countable
closed pseudocharacter (respectively, the countable local character) of the point x in
X . Let F be a winning strategy for player II in the game Gω1

1 (OX ,OX) (respectively,
Gω1

1 (O,D)).

Claim 1 Let α < ω1 and (Uβ : β < α) be a sequence of open covers. For every
neighbourhood U of x there is an open cover U such that:

F ((Uβ : β < α)⌢(U)) = U

Proof of Claim 1. Assume the contrary, and for every x ∈ X fix a neighbourhood Ux

of x, such that, for every open cover U , we have:

F ((Uβ : β < α)⌢(U)) 6= Ux

The set V = {Ux : x ∈ X} is an open cover of X , and thus we may find y ∈ X
such that F ((Uβ : β < α)⌢(V)) = Uy, but that is a contradiction. △

Use the claim to choose x∅ ∈ X so that for each open neighbourhood U of x∅ there
is an open cover U such that F ((U)) = U . Then, for each n < ω choose an open cover
U{(0,n)} such that F ((U{(0,n)}) = Un(x∅).

For each n0 < ω choose x{(0,n0)} ∈ X satisfying Claim 1 for the open cover U{(0,n0)}.
Then, for each n0, n < ω choose an open cover U{(0,n0),(1,n)} with:

F ((U{(0,n0)},U{(0,n0),(1,n)})) = Un(x{(0,n0)}).
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Then for each n0, n1 < ω choose x{(0,n0),(1,n1)} ∈ X as in Claim 1 for the se-
quence of open covers (U{(0,n0)},U{(0,n0),(1,n1)}). For each n < ω choose an open cover
U{(0,n0),(1,n1),(2,n)} such that

F ((U{(0,n0)},U{(0,n0),(1,n1)},U{(0,n0),(1,n1),(2,n)})) = Un(x{(0,n0),(1,n1)}),

and so on.

Now let α < ω1 and suppose that for every f ∈
⋃

β<α ω
α we have chosen points

xf ∈ X and open covers Uf such that for all β < α and for every f ∈ ωβ and n < ω
we have:

F ((Uf↾γ : γ < β)⌢(Uf∪{(β,n)})) = Un(xf )

.

Consider f ∈ ωα. Let xf ∈ X be the point guaranteed by applying Claim 1 to the
sequence (Uf↾β : β < α) of open covers. Then, for each n < ω choose an open cover
Uf∪{(α,n)} such that:

F ((Uf↾β : β < α)⌢(Uf∪{(α,n)})) ⊂ Un(xf )

At the end of the induction we will have chosen, for each f ∈
⋃

α<ω1
ωα a point

xf ∈ X and an open cover Uf such that for each such f and each n < ω, if f ∈ ωχ

then

F ((Uf↾β : β < χ)⌢(Uf∪{(χ,n)})) = Un(xf ).

Let D = {xf : f ∈
⋃

α<ω1
ωα} and note that |D| ≤ c.

Claim 2. The set D coincides with X (respectively, is dense in X).

Proof of Claim 2. Suppose not. Then we can find a point p ∈ X \ D (respectively,
an open set V such that V ⊂ X \ D). Choose n0 such that p /∈ Un0

(respectively,
Un0

(x∅)∩V = ∅). Player I plays with U{(0,n0)} and player II responds by means of the
strategy F . Suppose player I has played open covers (Uf↾β : β < α) for some f ∈ ωα

such that f(0) = n0. Choose nα such that p /∈ Unα
(respectively, Unα

(xf) ∩ V = ∅)
and let player I play Uf∪{(α,nα)}. In this way we build an F -play which is lost by
player two. But this contradicts the fact that F is a winning strategy for player two.

△

Since we clearly have |D| ≤ 2ℵ0 the proof of Theorem 1 is concluded. To finish
the proof of Theorem 2 it suffices to observe that, since X is first countable and D is
dense, we also have that |X| ≤ 2ℵ0.

�
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Corollary 2.3 (CH). Suppose X is a space of countable closed pseudocharacter. Then
player II has a winning strategy in Gω1

1 (OX ,OX) if and only if |X| ≤ ℵ1.

Corollary 2.4 (CH). Suppose X is a first-countable almost regular space. Then
player II has a winning strategy in Gω1

1 (OX ,DX) if and only if |X| ≤ ℵ1.

If player two can always win the respective games in ω many moves, then it’s clear
that the set D constructed in the proof is actually countable. This allows us to give
alternative proofs to two theorems presented in [3].

Theorem 2.5. Let X be a space of countable closed pseudocharacter. If player two
has a winning strategy in the game Gω

1 (O,O) then X is countable.

Theorem 2.6. Let X be a first.countable almost regular game. If player two has a
winning strategy in the game Gω

1 (O,D) then X is separable,

A further inspection in the proofs of Theorems 1.2 and 2.1 shows that they can be
formulated in a more general way.

Theorem 2.7. Let X be a space such that ψ(X) ≤ 2ℵ0. If player two has a winning
strategy in Gω1

1 (OX ,OX) then |X| ≤ 2ℵ0.

Theorem 2.8. Let X be a space such that ψc(X) ≤ 2ℵ0. If player two has a winning
strategy in Gω1

1 (OX ,OX) then |X| ≤ 2ℵ0.

Also, the following theorem can be proved along the lines of the proof of Theorem
2.1.

Theorem 2.9. Let X be a regular sequential space such that χ(X) ≤ 2ℵ0. If player
two has a winning strategy in Gω1

1 (O,D) then |X| ≤ 2ℵ0.

Theorem 1.2 is no longer true if we assume that player one does not have a winning
strategy in Gω1

1 (OX ,OX). Indeed Scheepers and Tall point out in [14] that if X
is Gorelic’s space, then X has the Rothberger property, and hence, by a result of
Pawlikowski [11] player one does not have a winning strategy even in the shorter
game Gω

1 (OX ,OX). Since, for regular spaces, Theorem 1.2 and Theorem 2.1 coincide,
we see that also in Theorem 2.1 player two has a winning strategy cannot be weakened
to player one does not have a winning strategy.

Theorem 1.2 suggests the following natural questions:

Question 2.10. Let X be a space of countable closed pseudocharacter and assume
that player two has a winning strategy in Gω1

fin(OX ,OX). Is it true that |X| ≤ 2ℵ0?

As a mild motivation towards a positive answer to the above question, note that if
X is a σ-compact space then player two has a winning strategy in Gω

fin(OX ,OX).

Question 2.11. Let X be a first-countable space in which player one does not have
a winning strategy in Gω1

1 (O,O). Is it true that |X| ≤ 2ℵ0?
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In reference to the above question, note that the fact that player one does not
have a winning strategy in Gω1

1 (OX ,OX) appears to be much stronger than X having
Lindelöf number ≤ ω1.

Theorem 2.1 suggests the following question:

Question 2.12. Let X be a first countable Hausdorff space such that player one does
not have a winning strategy in Gω

1 (OX ,OX). Is it true that |X| ≤ 2ℵ0?

If player one does not have a winning strategy in Gω1

1 (OX ,OX) then X is almost
Lindelöf, so the Bella-Cammaroto theorem implies that the above question has a
positive answer in the realm of Urysohn spaces.

The analogous of Question 2.10 for Theorem 2.1 has a negative answer, as we are
now going to show.

Definition 2.13. A subset X of the space Y is relative H-closed in Y if for every
open cover U of Y there is a finite subfamily U ′ ⊂ U satisfying X ⊆ U ′.

Theorem 2.14. If a space X is the union of countably many sets, each of which is rel-
atively H-closed in X, then player two has a winning strategy in the game Gω

fin(O,O).

Proof. Let {Yn : n < ω} be a cover of X by relatively H-closed sets. To define a
winning strategy for player two in Gω

1 (OX ,OX), assuming player one chooses the
open cover U at the n-th inning, let player two choose a finite collection V ⊂ O such
that Yn ⊂

⋃
V. �

In a similar way, we can prove the following theorem.

Theorem 2.15. ([3]) If a space X contains a dense subspace which is the union of
countably many relatively H-closed subsets, then player two has a winning strategy in
Gω

fin(OX ,OX).

In Theorem 2.2 we cannot relax first-countability with countable tightness and
countable pseudocharacter.

Example 2.16. For every cardinal κ there is a space X such that |X| = κ and player
two has a winning strategy in Gω1(O,D).

Proof. In [4] the authors constructed, for every cardinal κ, a space X with the fol-
lowing properties:

(1) |X| = κ.
(2) X has countable pseudocharacter and countable tightness.
(3) There is a countable subset Y ⊂ X such that for every open set U containing

Y , X \ U is countable.
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To see that player two has a winning strategy in Gω1

1 (OX ,DX) let {yn : n < ω}
be an enumeration of Y . For every n < ω, if player one plays open cover Un at the
n-th inning, let player two choose an open set Un ∈ Un such that xn ∈ Un. Let
U =

⋃
n<ω Un and {zn : n < ω} enumerate X \ U . For every n < ω, if player one

plays open cover Vn at inning ω+n, let player two choose Vn ∈ Vn such that zn ∈ Vn.
Then {Un : n < ω} ∪ {Vn : n < ω} has dense union in X and thus player two wins
the game if he plays according to the strategy described above. �

In Theorem 2.2 almost regularity cannot be dropped.

Example 2.17. For every cardinal κ there is a first-countable Hausdorff space X
such that player two has a winning strategy in Gω

1 (OX ,DX).

Proof. In [4] the authors construct, for every cardinal κ, a first-countable space X
such that |X| = κ and there is a subspace Y ⊂ X such that every open set containing
Y is dense in X . In a similar way as in the proof of Example 2.16, one proves that
player two has a winning strategy in Gω

1 (OX ,DX). �

We remarked that the assumption of countable closed pseudocharacter in Theo-
rem 2.1 is satisfied in the case of a Hausdorff first-countable space. However the
closed pseudocharacter of T1 first-countable spaces can be arbitrarily large, and in
fact Sakai showed in [12] an example of a first-countable T1 space X of arbitrarily
large cardinality such that player two has a winning strategy in Gω

1 (OX ,OX).

Example 2.18. (Sakai, [12]) There is a T1 almost regular first countable space of ar-
bitrarily large cardinality X where player two has a winning strategy in Gω

1 (OX ,OX).

Proof. Let κ be a cardinal and let A and B be disjoint sets such that |A| = ω and
|B| = κ. Let X = A∪B, where we declare each point of A to be isolated and declare
a basic neighbourhood of a point x ∈ B to be of the form {x}∪C where C is cofinite
in A.

This is clearly a T1 first-countable space and the closure of every open neighbour-
hood of a point of B in X is cofinite, and thus player two has a winning strategy in
Gω

1 (OX ,OX). Moreover, X is an almost regular space, because every point of A is
isolated and every open set hits A. �

In Question 23 of [3], the authors ask whether, in the Hausdorff realm, the space
X has a σ-H-closed dense subset if and only if player two having a winning strategy
in Gω

fin(OX ,DX). We now present a negative answer to this question.

Example 2.19. There is a space X such that player two has a winning strategy in
Gω

fin(OX ,DX) but no dense subset of X is the union of countably many H-closed
subspaces.
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Proof. In [5], Yaschenko and the first author construct, for every measurable cardinal
κ, a first-countable Hausdorff space X such that X is the union of countably many
relatively H-closed subsets and |X| = κ. By Theorem 2.14 player two has a winning
strategy in Gω

fin(OX ,OX) (and hence also in Gω
fin(OX ,DX)). However, no dense

subset of X is σ-H-closed. To see that, note that, since every first-countable H-
closed space has cardinality bounded by the continuum, if a space has a σ-H-closed
dense subspace then it also has density at most continuum. But a first-countable
space of density bounded by the continuum also has cardinality bounded by the
continuum. �

We finish this section by suggesting another possible way to give a partial answer
to Question 1.4. Since the fact that player two has a winning strategy in Gω

fin(O,D)
seems to be much stronger than the weak Lindelöf property, it appears reasonable to
ask the following question.

Question 2.20. Let X be a first-countable regular space and assume that player two
has a winning strategy in the game Gω

fin(OX ,DX). Is it true that |X| ≤ c?

3. The cellular-open game and Shapirovskii’s bound on the weight

Given a topological space X we denote by CX the family of all maximal pairwise
disjoint open families in X . The game Gτ

1(CX ,DX) was introduced by Aurichi in [1]
for the case τ = ω.

Note that there is a clear connection between this game and the games studied in
the previous section.

Proposition 3.1. If player two has a winning strategy in the game Gτ
1(C,D) then it

also has a winning strategy in the game Gτ
1(O,D).

Proof. Indeed, let Uα be the open cover played by player I at the α-th winning. Refine
Uα to a maximal cellular family Cα. Player II uses his strategy to pick an open set
Uα ∈ Cα so that

⋃
{Uα : α < τ} is dense in X . �

If X is a space such that player two has a winning strategy in Gω
1 (CX ,DX), then

certainly X is ccc. However, the game-theoretic property appears to be much stronger
than the ccc, and thus it is reasonable to expect a better behaviour with respect to
the various topological operations. For example, we may ask the following question.

Question 3.2. Let {Xi : i ∈ I} be a family of spaces such that player two has a
winning strategy in Gω

1 (CXi
,DXi

) for every i ∈ I and let X =
∏

i∈I Xi. Is it true that
player two has a winning strategy in Gω

1 (CX ,DX)?

Question 3.2 was addressed by Aurichi in [1], who gave the following partial answer
(note that a countable π-base suggests an obvious winning strategy for player two).
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Theorem 3.3. (Aurichi, [1]) Let {Xi : i ∈ I} be a family of spaces such that Xi a
countable π-base for every i ∈ I and X =

∏
i∈I Xi . Then player two has a winning

strategy in Gω
1 (CX ,DX).

We will be able to replace countable π-weight with countable π-character in the
above result, by proving that a winning strategy for player two is actually equivalent
to countable π-weight in the realm of spaces with countable π-character. This will be
the byproduct of a game-theoretic proof of Shapirovskii’s bound on the regular open
sets, which stands on the playful characterization of cellularity provided by Theorem
3.5

Definition 3.4. We define the cellular-open number of X (con(X)) to be the least
cardinal κ such that for every play of player one, player two is able to win in α moves
with |α| ≤ κ.

Theorem 3.5. For every space X, c(X) = con(X).

Proof. To prove that con(X) ≤ c(X), suppose c(X) = κ. Let Mα be the maximal
cellular family played by player one at the αth inning and suppose that in his turn
player two picks Uα ∈ Mα.

Moreover, suppose that we picked open sets {Vα : α < β} such that {Uα ∩ Vα :
α < β} is a pairwise disjoint family of non-empty open sets. If

⋃
α<β Uα is dense

then player two won. Otherwise, we can find a non-empty open set Vβ such that
Vβ ∩

⋃
α<β Uα = ∅. Now let Uβ ∈ Mβ be such that Vβ ∩ Uβ 6= ∅. In the β-th inning,

player two picks Uβ . Note that the family {Uα ∩ Vα : α ≤ β} is pairwise disjoint.
If the two players were able to carry this on for κ+ many innings we would obtain
a κ+-sized pairwise disjoint family of open sets, which contradicts c(X) = κ. Thus
con(X) ≤ κ.

Viceversa, assume that con(X) = κ and suppose by contradiction that c(X) ≥ κ+.
Then we can fix a maximal cellular family C of size at least κ+. Let player one play
C at every winning. By con(X) = κ, player two is able to win the game in α many
innings, with |α| ≤ κ, and thus the fact that C is a cellular family is contradicted. �

Theorem 3.6. Let X be an almost regular space.

(1) πw(X) ≤ (πχ(X))c(X).
(2) If player two has a winning strategy in Gω

1 (C,D) and πχ(X) ≤ ω then X has
countable π-weight.

Proof. Set πχ(X) = κ and c(X) = µ. For every x ∈ X let P(x) be a local π-base at
x having size κ. By Lemma 3.5 we can fix a winning strategy F for player two in the

game Gµ+

1 (CX ,DX).
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Claim 1. Let α < µ+ and (Uβ : β < α) be a sequence of maximal cellular families.
For every neighbourhood U of x there is a non-empty open V ⊂ U with V ∈ P(x)
and a maximal cellular family U such that:

F ((Uβ : β < α)⌢(U)) ⊂ V

Proof of Claim 1. Suppose this is not true. Then for every x ∈ X fix a neighbourhood
Ux of x, such that for every open V ⊂ Ux with V ∈ P(x) and every maximal cellular
family U we have:

F ((Uβ : β < α)⌢(U)) * V

Let P = {B : (∃x)(B ∈ P(x)∧B ⊂ Ux)}. The poset of all cellular families refining
P satisfies the assumptions of Zorn’s Lemma, and hence we can fix a maximal element
U in it. Since P has dense union in X , U is actually a maximal cellular family.

Then F ((Uβ : β < α)⌢(V)) ⊂ B, for some B ∈ P(x) such that B ⊂ Ux. But this
is a contradiction.

△

For every x ∈ X , let τ(x) = {U ∈ τ : x ∈ U}.

Choose a point x∅ ∈ X satisfying Claim 1 for the empty sequence. For every
U ∈ τ(x∅) we can then choose an open set V 0

U ∈ P(x∅) such that V 0
U ⊂ U and

a maximal cellular family U0
U such that F ((U0

U)) ⊂ VU . Let {Uγ(x∅) : γ < κ}
enumerate the set {V 0

U : U ∈ τ(x∅)}. For every α < κ choose U ∈ τ(x∅) such
that F ((U0

U)) ⊂ Uα(x∅) and define U{(0,α)} = U0
U .

For each α0 < κ choose x{(0,α0)} ∈ X satisfying Claim 1 for the sequence (U{(0,α0)}).
Then for each U ∈ τ(x{(0,α0)}) we can choose an open set V 1

U ∈ P(x{(0,α0)}) and a
maximal cellular family U1

U such that F ((U{(0,α0)},U
1
U)) ⊂ V 1

U . Let {Uγ(x{(0,α0)}) : γ <
κ} enumerate the set {V 1

U : U ∈ τ(x{(0,α0)})}. For every α < κ choose U ∈ τ(x{(0,α0)})
such that F ((U{(0,α0)},U

1
U)) ⊂ Uα(x{(0,α0)}) and define U{(0,α0),(1,α)} = U1

U .

Now let θ < µ+ and suppose that for every f ∈
⋃

β<θ κ
β we have chosen a point

xf ∈ X , a maximal cellular family Uf and a local π-base {Uγ(xf ) : γ < κ} at xf such
that for all β < θ and for every f ∈ κβ and ρ < κ we have:

F ((Uf↾γ : γ < β)⌢(Uf∪{(β,ρ)})) ⊂ Uρ(xf ).

Fix f ∈ κθ. Let xf ∈ X be the point guaranteed by applying Claim 1 to the
sequence (Uf↾β : β < θ) of maximal cellular families. Then, for each U ∈ τ(xf ) we
can choose an open set V θ

U ∈ P(xf ) and a maximal cellular family Uθ
U such that

F ((Uf↾β : β < θ)⌢(Uθ
U )) ⊂ V θ

U . Let {Uγ(xf ) : γ < κ} enumerate {V θ
U : U ∈ τ(xf )}.
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For every α < κ, choose U ∈ τ(xf ) such that F ((Uf↾β : β < θ)⌢(Uθ
U)) ⊂ Uα(xf ) and

define Uf⌢((θ,α)) = Uθ
U .

At the end of the induction we will have chosen, for each f ∈
⋃

θ<µ+ κθ a point

xf ∈ X , a maximal cellular family Uf and a local π-base {Uγ(xf ) : γ < κ} at xf such
that for each α < κ, χ < µ+ and f ∈ κχ we have:

F ((Uf↾β : β < χ)⌢(Uf∪{(χ,α)})) ⊂ Uα(xf ).

Let D = {xf : f ∈
⋃

α<µ+ κα}.

Claim 2. The set D is dense in X .

Proof of Claim 2. Suppose not. Then we can find an open set V such that V ∩D = ∅.
Since {Uγ(x∅) : γ < κ} forms a local π-base at x∅ we can choose an ordinal γ0 < κ
such that Uγ0(x∅) ∩ V = ∅. Player one then plays U{(0,γ0)} in his first move. Suppose
player I has played maximal cellular families (Uf↾β : β < α) for some f ∈ κα such that
f(0) = γ0. Choose γα such that Uγα(xf ) ∩ V = ∅ and let player one play Uf∪{(α,γα)}.
In this way we build a play which is lost by player two using the strategy F . But this
contradicts the fact that F is a winning strategy for player two. △

Since |D| ≤ κµ, we then have that d(X) ≤ κµ. Now we have πw(X) ≤ πχ(X) ·
d(X) ≤ (πχ(X))c(X).

To prove the second statement, note that if player two has a winning strategy in
Gω

1 (C,D) then the set D defined before Claim 2 is actually countable. Now, every
separable space of countable π-character has countable π-weight. �

Corollary 3.7. (Shapirovskii) Let X be an almost regular space. Then ρ(X) ≤
πχ(X)c(X).

Proof. This follows from Theorem 3.6, (1) and the inequality ρ(X) ≤ πw(X)c(X), a
proof of which can be found in [10]. �

Theorem 3.6, (2) yields the following characterization.

Corollary 3.8. Let X be a regular space of countable π-character. Then X has
countable π-weight if and only if player II has a winning strategy in Gω

1 (C,D).

Putting together Corollary 3.8 and Theorem 3.3 we obtain the following partial
answer to Question 3.2.

Theorem 3.9. Having a winning strategy for player two in the game Gω
1 (C,D) is

productive for the class of spaces of countable π-character.

Hajnal and Juhász proved in [8] that the cardinality of first-countable ccc Hausdorff
spaces is at the most the continuum. Combining Proposition 3.1, Theorem 2.2 and
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Theorem 3.5 we obtain that the Hajnal-Juhász bound is true for the class of almost
regular spaces. Note that there are almost regular non-Hausdorff spaces (Example
2.18 provides an example of such a space).

Theorem 3.10. Let X be an almost regular ccc first-countable space. Then |X| ≤ c.

However, Hajnal and Juhász’s bound fails for first-countable T1 spaces where player
two has a winning strategy for the game Gω

1 (C,D), as the following example shows.

Example 3.11. Let κ be any uncountable cardinal. There is a T1 first-countable
space such that |X| = κ where Player II has a winning strategy for Gω

1 (CX ,DX).

Proof. Let A ⊂ R \ Q be a countable dense subset in the Euclidean topology. We
define a topology on X = (Q× κ) ∪ A, by declaring

{(r, β) : |r − q| < 1/n, r ∈ Q, β < κ} ∪ {s ∈ A : |s− q| < 1/n} \ F

to be a basic open set, where q ∈ Q and F ∈ [X ]<ω.

This defines a T1 first countable topology on X . To see why Player two has a
winning strategy for Gω

1 (CX ,DX), let {Un : n < ω} be a countable base for A in the
relative topology (which coincides with the Euclidean topology on A). Let Cn be the
maximal cellular family player by player I at the n-th inning. Then {C ∩A : C ∈ Cn}
is a maximal cellular family in A. So let Cn ∈ Cn be such that Un ∩Cn 6= ∅. Player II
plays Cn at the n-th inning. It is clear from the definition of the topology on X that⋃
{Cn : n < ω} is dense in X . �
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