Catheter ablation (CA) is the most popular treatment of atrial fibrillation (AF) with good results in paroxysmal AF, while its efficiency is significantly reduced in persistent AF. With the equipment used for CA strongly depending on electro-gram (EGM) fractionation quantification, the use of a reliable fractionation estimator is crucial to reduce the high recurrence rates in persistent AF. This work introduces a non-linear EGM fractionation quantification technique, which is based on coarse-grained correlation dimension (CGCD) computed over epochs of 1 second. Recordings were firstly normalized, denoised and lowpass filtered. The final CGCD value was calculated by the median CGCD value of all the epochs that a recording consisted of. Results were evaluated on three groups. Groups 1 and 2 contained 24 high-quality and 119 mid-range EGMs, respectively, manually pre-classified by AF types following Wells' criteria, then classified according to their CGCD values. 20 pseudo-real Type IV EGMs formed group 3 that was also automatically classified by AF type. In Groups 1 and 2, classification accuracy was 100% and 84-85.7%, respectively, using 10-fold cross-validation. The receiver-operating characteristics (ROC) analysis for highly fractionated EGMs, showed 100% specificity and sensitivity in Group 1 and 87.5% specificity and 93.6% sensitivity in Group 2. CGCD was always consistent with the fractionation degree of EGMs. 100% of the EGMs in Group 3 were correctly identified as Type IV AF. High accuracy results indicate that the method can estimate precisely the AF Type and detect the existence of AF Type IV cases. Both things are crucial in assisting improved substrate mapping during CA procedures of persistent AF.

Vraka A., Hornero F., Osca J., Faes L., Alcaraz R., Rieta J.J. (2019). Assisting electrophysiological substrate quantification in atrial fibrillation ablation. In 2019 7th E-Health and Bioengineering Conference, EHB 2019 (pp. 1-4). Institute of Electrical and Electronics Engineers Inc. [10.1109/EHB47216.2019.8969928].

Assisting electrophysiological substrate quantification in atrial fibrillation ablation

Faes L.;
2019-01-01

Abstract

Catheter ablation (CA) is the most popular treatment of atrial fibrillation (AF) with good results in paroxysmal AF, while its efficiency is significantly reduced in persistent AF. With the equipment used for CA strongly depending on electro-gram (EGM) fractionation quantification, the use of a reliable fractionation estimator is crucial to reduce the high recurrence rates in persistent AF. This work introduces a non-linear EGM fractionation quantification technique, which is based on coarse-grained correlation dimension (CGCD) computed over epochs of 1 second. Recordings were firstly normalized, denoised and lowpass filtered. The final CGCD value was calculated by the median CGCD value of all the epochs that a recording consisted of. Results were evaluated on three groups. Groups 1 and 2 contained 24 high-quality and 119 mid-range EGMs, respectively, manually pre-classified by AF types following Wells' criteria, then classified according to their CGCD values. 20 pseudo-real Type IV EGMs formed group 3 that was also automatically classified by AF type. In Groups 1 and 2, classification accuracy was 100% and 84-85.7%, respectively, using 10-fold cross-validation. The receiver-operating characteristics (ROC) analysis for highly fractionated EGMs, showed 100% specificity and sensitivity in Group 1 and 87.5% specificity and 93.6% sensitivity in Group 2. CGCD was always consistent with the fractionation degree of EGMs. 100% of the EGMs in Group 3 were correctly identified as Type IV AF. High accuracy results indicate that the method can estimate precisely the AF Type and detect the existence of AF Type IV cases. Both things are crucial in assisting improved substrate mapping during CA procedures of persistent AF.
2019
Atrial fibrillation
Catheter ablation
Correlation dimension
Electrogram fractionation
978-1-7281-2603-6
Vraka A., Hornero F., Osca J., Faes L., Alcaraz R., Rieta J.J. (2019). Assisting electrophysiological substrate quantification in atrial fibrillation ablation. In 2019 7th E-Health and Bioengineering Conference, EHB 2019 (pp. 1-4). Institute of Electrical and Electronics Engineers Inc. [10.1109/EHB47216.2019.8969928].
File in questo prodotto:
File Dimensione Formato  
Assisting Electrophysiological Substrate Quantification in Atrial Fibrillation Ablation.pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/435958
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact