The use of advanced global positional system (GPS) trackers has emerged as a novel technology in data collection of units movements. GPS data contain a large amount of information since the signals of the units are recorded almost in real time. The analysis of GPS data can be carried on several aspects of the spatial movements. In this study, we focus on statistical methods for the identification of points of interests and the analysis of the network of movements for GPS data. In particular, a density cluster-based algorithm is applied to summarize the vast amount of information and to find the most relevant points of attractions. A directed network synthesizes the individual unit path by using the latter information. Finally, we aggregate the unit paths in a weighted directed network which is studied through network analysis. We apply the proposed approach to a case study on cruise passengers’ movements in an urban context.

La diffusione dei sistemi di localizzazione GPS offre numerose opportunita per la raccolta di dati di movimento. I dati GPS presentano diversi elementi di complessita derivanti anche dall’elevato dettaglio temporale e territoriale. Numerosi sono gli aspetti che possono essere presi in esame per tale tipologia di dati. Il presente studio propone un approccio statistico basato sull’identificazione dei punti di attrazione e sullo studio dei network. In particolare, viene proposto un algoritmo di identificazione di cluster, sulla base della densita di punti, che vengono sintetizzati in un network che riassume il comportamento individuale. In un secondo step, i movimenti complessivi sono aggregati ed analizzati tramite la network analysis. L’approccio proposto e applicato allo studio dei movimenti di croceristi in contesti ` urbani.

Antonino Abbruzzo, M.F. (2019). Density-based Algorithm and Network Analysis for GPS Data. In G. Arbia, S. Peluso, A. Pini, G. Rivellini (a cura di), Smart Statistics for Smart Applications (pp. 617-622). Pearson.

Density-based Algorithm and Network Analysis for GPS Data

Antonino Abbruzzo
;
Mauro Ferrante
;
Stefano De Cantis
2019-01-01

Abstract

The use of advanced global positional system (GPS) trackers has emerged as a novel technology in data collection of units movements. GPS data contain a large amount of information since the signals of the units are recorded almost in real time. The analysis of GPS data can be carried on several aspects of the spatial movements. In this study, we focus on statistical methods for the identification of points of interests and the analysis of the network of movements for GPS data. In particular, a density cluster-based algorithm is applied to summarize the vast amount of information and to find the most relevant points of attractions. A directed network synthesizes the individual unit path by using the latter information. Finally, we aggregate the unit paths in a weighted directed network which is studied through network analysis. We apply the proposed approach to a case study on cruise passengers’ movements in an urban context.
2019
9788891915108
Antonino Abbruzzo, M.F. (2019). Density-based Algorithm and Network Analysis for GPS Data. In G. Arbia, S. Peluso, A. Pini, G. Rivellini (a cura di), Smart Statistics for Smart Applications (pp. 617-622). Pearson.
File in questo prodotto:
File Dimensione Formato  
Abbruzzo_Ferrante_DeCantis_SIS2019.pdf

accesso aperto

Descrizione: contributo in atti di Convegno
Tipologia: Versione Editoriale
Dimensione 335.65 kB
Formato Adobe PDF
335.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/432984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact