This paper deals with the nonlinear Dirichlet problem of capillary phenomena involving an equation driven by the p-Laplacian-like di¤erential operator in RN. We prove the existence of at least one nontrivial nonnegative weak solution, when the reaction term satisfies a sub-critical growth condition and the potential term has certain regularities. We apply the energy functional method and weaker compactness conditions.
Vetro C. (2020). A model of capillary phenomena in RN with sub-critical growth. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 31(2), 335-347.
Data di pubblicazione: | 2020 | |
Titolo: | A model of capillary phenomena in RN with sub-critical growth | |
Autori: | ||
Citazione: | Vetro C. (2020). A model of capillary phenomena in RN with sub-critical growth. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 31(2), 335-347. | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.4171/RLM/894 | |
Abstract: | This paper deals with the nonlinear Dirichlet problem of capillary phenomena involving an equation driven by the p-Laplacian-like di¤erential operator in RN. We prove the existence of at least one nontrivial nonnegative weak solution, when the reaction term satisfies a sub-critical growth condition and the potential term has certain regularities. We apply the energy functional method and weaker compactness conditions. | |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
2020_RLM_Vetro (1).pdf | Articolo principale | Versione Editoriale | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.