This paper deals with the nonlinear Dirichlet problem of capillary phenomena involving an equation driven by the p-Laplacian-like di¤erential operator in RN. We prove the existence of at least one nontrivial nonnegative weak solution, when the reaction term satisfies a sub-critical growth condition and the potential term has certain regularities. We apply the energy functional method and weaker compactness conditions.
Vetro C. (2020). A model of capillary phenomena in RN with sub-critical growth. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 31(2), 335-347 [10.4171/RLM/894].
A model of capillary phenomena in RN with sub-critical growth
Vetro C.
2020-01-01
Abstract
This paper deals with the nonlinear Dirichlet problem of capillary phenomena involving an equation driven by the p-Laplacian-like di¤erential operator in RN. We prove the existence of at least one nontrivial nonnegative weak solution, when the reaction term satisfies a sub-critical growth condition and the potential term has certain regularities. We apply the energy functional method and weaker compactness conditions.File | Dimensione | Formato | |
---|---|---|---|
2020_RLM_Vetro (1).pdf
Solo gestori archvio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale
Dimensione
112.87 kB
Formato
Adobe PDF
|
112.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10447_432809-post-print.pdf
accesso aperto
Tipologia:
Post-print
Dimensione
284.05 kB
Formato
Adobe PDF
|
284.05 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.