This paper deals with the nonlinear Dirichlet problem of capillary phenomena involving an equation driven by the p-Laplacian-like di¤erential operator in RN. We prove the existence of at least one nontrivial nonnegative weak solution, when the reaction term satisfies a sub-critical growth condition and the potential term has certain regularities. We apply the energy functional method and weaker compactness conditions.

Vetro C. (2020). A model of capillary phenomena in RN with sub-critical growth. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 31(2), 335-347 [10.4171/RLM/894].

A model of capillary phenomena in RN with sub-critical growth

Vetro C.
2020-01-01

Abstract

This paper deals with the nonlinear Dirichlet problem of capillary phenomena involving an equation driven by the p-Laplacian-like di¤erential operator in RN. We prove the existence of at least one nontrivial nonnegative weak solution, when the reaction term satisfies a sub-critical growth condition and the potential term has certain regularities. We apply the energy functional method and weaker compactness conditions.
Settore MAT/05 - Analisi Matematica
Vetro C. (2020). A model of capillary phenomena in RN with sub-critical growth. ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI, 31(2), 335-347 [10.4171/RLM/894].
File in questo prodotto:
File Dimensione Formato  
2020_RLM_Vetro (1).pdf

Solo gestori archvio

Descrizione: Articolo principale
Tipologia: Versione Editoriale
Dimensione 112.87 kB
Formato Adobe PDF
112.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10447/432809
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact