A MODEL OF CAPILLARY PHENOMENA IN \mathbb{R}^{N} WITH SUB-CRITICAL GROWTH

CALOGERO VETRO

Abstract

This paper deals with the nonlinear Dirichlet problem of capillary phenomena involving an equation driven by the p-Laplacian-like differential operator in \mathbb{R}^{N}. We prove the existence of at least one nontrivial nonnegative weak solution, when the reaction term satisfies a sub-critical growth condition and the potential term has certain regularities. We apply the energy functional method and weaker compactness conditions.

1. Introduction

In this paper we study the following problem:

$$
\begin{equation*}
-\Delta_{p}^{l} u+\xi(x)|u|^{p-2} u=g(x, u), x \in \mathbb{R}^{N}, 1<p<N \tag{1}
\end{equation*}
$$

In this problem $\Delta_{p}^{l} u$ denotes the p-Laplacian-like operator defined by

$$
\Delta_{p}^{l} u:=\operatorname{div}\left(\left(1+\frac{|\nabla u|^{p}}{\sqrt{1+|\nabla u|^{2 p}}}\right)|\nabla u|^{p-2} \nabla u\right) .
$$

The potential function $\xi(\cdot)$ is continuous, coercive (that is, $\xi(x) \rightarrow$ $+\infty$ as $|x| \rightarrow+\infty)$ and positive. In the reaction (right hand side of (1)), $g(x, z)$ is a Carathéodory function (that is, for all $z \in \mathbb{R}, x \rightarrow$ $g(x, z)$ is measurable and for a.a. $x \in \mathbb{R}^{N}, z \rightarrow g(x, z)$ is continuous), and satisfies the following hypotheses:
$\left(g_{0}\right) g(x, z)=0$ for $z \leq 0$ and $G(x, z)>0$ if $z>0$, where

$$
G(x, z):=\int_{0}^{z} g(x, s) d s, \quad \text { for all } x \in \mathbb{R}^{N}, \text { all } z \in \mathbb{R}
$$

$\left(g_{1}\right)$ there exist $\left.s \in\right] p, p^{*}\left[, k \in L^{\infty}\left(\mathbb{R}^{N}\right)_{+} \cap L^{\frac{s}{s-1}}\left(\mathbb{R}^{N}\right)\right.$ and two constants $c>0$ and $\alpha \in] p, p^{*}[$ such that

$$
|g(x, z)| \leq k(x)+c|z|^{\alpha-1} \quad \text { for all }(x, z) \in \mathbb{R}^{N} \times \mathbb{R}
$$

Key words and phrases. Capillary phenomena; Dirichlet boundary value problem; p-Laplacian-like operator; Sobolev space.

2010 Mathematics Subject Classification: 35D30, 35J60.
where $p^{*}=\frac{N p}{N-p}$ if $p<N$ and $p^{*}=+\infty$ if $p \geq N$;
$\left(g_{2}\right) \lim _{z \rightarrow+\infty} \frac{G(x, z)}{z^{p}}=+\infty$ uniformly in $x \in \mathbb{R}^{N}$;
$\left(g_{3}\right)$ there exists $\beta \in L^{1}\left(\mathbb{R}^{N}\right)_{+}$such that

$$
\sigma(x, z) \leq \sigma(x, v)+\beta(x) \quad \text { for all } 0<z<v
$$

where $\sigma(x, z)=g(x, z) z-2 p G(x, z)$;
$\left(g_{4}\right)$ there exists $l \in L^{\infty}\left(\mathbb{R}^{N}\right)_{+}$such that $\|l\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} C_{p}^{p}<1$, where C_{p} is the constant relative to the continuous embedding $W \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ (see Proposition 1) and

$$
\limsup _{z \rightarrow 0^{+}} \frac{p G(x, z)}{z^{p}} \leq l(x) \quad \text { uniformly in } x \in \mathbb{R}^{N} .
$$

Under these conditions, we show that problem (1) has at least one nontrivial nonnegative weak solution.

We present a characteristic example of function $g(x, z)$ satisfying the hypotheses $\left(g_{0}\right)-\left(g_{4}\right)$.

Example 1. Let $g(x, z)=|z|^{p-2} z \log (1+|z|)$ for all $z \in \mathbb{R}$ with $z>0$ and $g(x, z)=0$ for all $z \in \mathbb{R}$ with $z \leq 0$. We drop the dependence on x for simplicity.

We mention that recently differential equations driven by p-Laplacianlike operators attracted considerable interest (for instance, such a kind of operators is used to model the phenomenon of capillarity). Consequently, there have been various existence and multiplicity results for such equations. We mention the works of Chen-Luo [4], PapageorgiouRocha [7], Rodrigues [8], Vetro [10], Zhou [11] (Dirichlet problem), Afrouzi-Kirane-Shokooh [1], Shokooh [9] (Neumann problem).

2. Mathematical background

The main space in the analysis of problem (1) is the Sobolev space $W^{1, p}\left(\mathbb{R}^{N}\right)$. Recall that when the domain is the whole \mathbb{R}^{N}, the Sobolev embedding is not compact. This is a difficulty in our study (see, for example, Chaves-Ercole-Miyagaki [3]). Let $D^{1, p}\left(\mathbb{R}^{N}\right)$ denote the closure of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with respect to the norm of $W^{1, p}\left(\mathbb{R}^{N}\right)$. Then $D^{1, p}\left(\mathbb{R}^{N}\right)$ is the reflexive Banach space

$$
D^{1, p}\left(\mathbb{R}^{N}\right):=\left\{u \in L^{p^{*}}\left(\mathbb{R}^{N}\right): \frac{\partial u}{\partial x_{i}} \in L^{p}\left(\mathbb{R}^{N}\right), i=1, \ldots, N\right\}
$$

(see Ben-Naoum-Troestler-Willem [2]). Also, its norm is equivalent to $\|\nabla(\cdot)\|$. We point out that $W^{1, p}\left(\mathbb{R}^{N}\right) \varsubsetneqq D^{1, p}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{p^{*}}\left(\mathbb{R}^{N}\right)$.

Consider the reflexive Banach space

$$
W:=\left\{u \in D^{1, p}\left(\mathbb{R}^{N}\right): \int_{\mathbb{R}^{N}} \xi(x)|u|^{p} d x<+\infty\right\}
$$

equipped with the norm

$$
\|u\|:=\left(\int_{\mathbb{R}^{N}}\left(|\nabla u|^{p}+\xi(x)|u|^{p} d x\right)^{\frac{1}{p}}\right.
$$

The coercivity of the function ξ implies the continuity of the embedding $W \hookrightarrow L^{s}\left(\mathbb{R}^{N}\right)$ if $p \leq s \leq p^{*}$, and its compactness if $p \leq s<p^{*}$. In view of these considerations, we are able to prove that the energy functional associated with nonnegative solutions of (1) in W satisfies both the $\left(C_{c}\right)$-condition and a mountain pass geometry (see Motreanu-Motreanu-Papageorgiou [6]). In so doing, we do not impose the Ambrosetti-Rabinowitz condition (see also Li-Yang [5], where a more restricted version of the quasimonotonicity condition is first introduced). Note that the function of Example 1 does not satisfy the Ambrosetti-Rabinowitz condition.

We recall that a weak solution of problem (1) is a function $u \in W$ such that

$$
\begin{gathered}
\int_{\mathbb{R}^{N}}|\nabla u|^{p-2} \nabla u \nabla v d x+\int_{\mathbb{R}^{N}} \frac{|\nabla u|^{2 p-2} \nabla u}{\sqrt{1+|\nabla u|^{2 p}}} \nabla v d x \\
\quad+\int_{\mathbb{R}^{N}} \xi(x)|u|^{p-2} u v d x=\int_{\mathbb{R}^{N}} g(x, u) v d x,
\end{gathered}
$$

for all $v \in W$.
Let X be a Banach space and X^{*} its topological dual. Consider the C^{1}-functional $I: W \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
I(u)= & \frac{1}{p} \int_{\mathbb{R}^{N}}\left[|\nabla u|^{p}+\xi(x)|u|^{p}\right] d x \\
& +\frac{1}{p} \int_{\mathbb{R}^{N}}\left[\sqrt{1+|\nabla u|^{2 p}}-1\right] d x-\int_{\mathbb{R}^{N}} G(x, u) d x
\end{aligned}
$$

for all $u \in W$. Let $I^{\prime}: W \rightarrow W^{*}$ be such that

$$
\begin{aligned}
\left\langle I^{\prime}(u), v\right\rangle= & \int_{\mathbb{R}^{N}}\left[|\nabla u|^{p-2} \nabla u \nabla v+\xi(x)|u|^{p-2} u v\right] d x \\
& +\int_{\mathbb{R}^{N}} \frac{|\nabla u|^{2 p-2} \nabla u}{\sqrt{1+|\nabla u|^{2 p}}} \nabla v d x-\int_{\mathbb{R}^{N}} g(x, u) v d x
\end{aligned}
$$

for all $u, v \in W$.

Also, we have

$$
\begin{align*}
& I(u)-\frac{1}{2 p}\left\langle I^{\prime}(u), u\right\rangle=\frac{1}{p}\|u\|^{p}+\frac{1}{p} \int_{\mathbb{R}^{N}}\left[\sqrt{1+|\nabla u|^{2 p}}-1\right] d x \tag{2}\\
& \quad-\int_{\mathbb{R}^{N}} G(x, u) d x-\frac{1}{2 p}\|u\|^{p}-\frac{1}{2 p} \int_{\mathbb{R}^{N}} \frac{|\nabla u|^{2 p}}{\sqrt{1+|\nabla u|^{2 p}}} d x \\
& \quad+\frac{1}{2 p} \int_{\mathbb{R}^{N}} g(x, u) u d x \\
& =\frac{1}{2 p}\|u\|^{p}+\frac{1}{p} \int_{\mathbb{R}^{N}}\left[\sqrt{1+|\nabla u|^{2 p}}-1-\frac{1}{2} \frac{|\nabla u|^{2 p}}{\sqrt{1+|\nabla u|^{2 p}}}\right] d x \\
& \quad+\frac{1}{2 p} \int_{\mathbb{R}^{N}} \sigma(x, u) d x .
\end{align*}
$$

From Chaves-Ercole-Miyagaki [3] (Proposition 2), we have:
Proposition 1. $(W,\|\cdot\|)$ is a reflexive (uniformly convex) Banach space and the embedding $W \hookrightarrow L^{s}\left(\mathbb{R}^{N}\right)$ is continuous, whenever $p \leq$ $s \leq p^{*}$, and compact, whenever $p \leq s<p^{*}$.
Remark 1. Let $J: W \rightarrow \mathbb{R}$ be the linear functional defined by

$$
\langle J(u), v\rangle:=\int_{\mathbb{R}^{N}}\left[|\nabla u|^{p-2} \nabla u \nabla v+\xi(x)|u|^{p-2} u v\right] d x
$$

for all $v \in W$. We stress that J is bounded with

$$
\begin{aligned}
& \left|\int_{\mathbb{R}^{N}}\left[|\nabla u|^{p-2} \nabla u \nabla v+\xi(x)|u|^{p-2} u v\right] d x\right| \\
& \leq 2\|u\|^{p-1}\|v\| \quad \text { (by Hölder inequality). }
\end{aligned}
$$

We recall the following compactness condition.
Definition 1. Let X be a real Banach space and $I \in C^{1}(X, \mathbb{R})$. We say that I satisfies the $\left(C_{c}\right)$-condition if any sequence $\left\{u_{n}\right\} \subset X$ such that $I\left(u_{n}\right) \rightarrow c$ and $\left(1+\left\|u_{n}\right\|\right) I^{\prime}\left(u_{n}\right) \rightarrow 0$ in X^{*} as $n \rightarrow+\infty$ has a convergent subsequence.

From Motreanu-Motreanu-Papageorgiou [6], we know that the Mountain Pass Theorem remains true under $\left(C_{c}\right)$-condition. We recall the Mountain Pass Theorem (see Theorem 5.40, p.118, Motreanu-Motreanu-Papageorgiou [6]).

Theorem 1. If $I \in C^{1}(X, \mathbb{R})$ satisfies the $\left(C_{c}\right)$-condition, there exist $u_{0}, u_{1} \in X$ and $\rho>0$ such that

$$
\left\|u_{1}-u_{0}\right\|>\rho, \quad \max \left\{I\left(u_{0}\right), I\left(u_{1}\right)\right\}<\inf \left\{\left\|u-u_{0}\right\|=\rho\right\}=m_{\rho},
$$

and $c=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} I(\gamma(t))$ with $\Gamma=\left\{\gamma \in C([0,1], X): \gamma(0)=u_{0}, \gamma(1)=\right.$ $\left.u_{1}\right\}$, then $c \geq m_{\rho}$ and c is a critical value of I (that is, there exists $\widehat{u} \in X$ such that $I^{\prime}(\widehat{u})=0$ and $\left.I(\widehat{u})=c\right)$.

3. Weak solutions

In this section, we use the $\left(C_{c}\right)$-condition and the mountain pass geometry to produce a nonnegative weak solution for problem (1). The idea is simple. If the C^{1}-functional $I: W \rightarrow \mathbb{R}$ satisfies both the $\left(C_{c}\right)$-condition and a mountain pass geometry, then I has a critical point in W.
Lemma 1. $I: W \rightarrow \mathbb{R}$ satisfies the $\left(C_{c}\right)$-condition for each positive constant c.
Proof. Consider a sequence $\left\{u_{n}\right\} \subset W$ satisfying the $\left(C_{c}\right)$-condition with respect to the C^{1}-functional I and $c>0$. So, we have

$$
\begin{equation*}
c=I\left(u_{n}\right)+c_{n}, \quad\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle \rightarrow 0 \quad \text { as } n \rightarrow+\infty, \tag{3}
\end{equation*}
$$

where $c_{n} \rightarrow 0$ as $n \rightarrow+\infty$. From (3), there is a sequence $\left\{\varepsilon_{n}\right\}$ of positive real numbers with $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow+\infty$, such that

$$
\left|\left\langle I^{\prime}\left(u_{n}\right), v\right\rangle\right| \leq \frac{\varepsilon_{n}\|v\|}{1+\left\|u_{n}\right\|} \quad \text { for all } v \in W \text { and } n \in \mathbb{N} .
$$

Now, choosing $v=u_{n}^{-}:=\min \left\{0, u_{n}\right\}$, we deduce that u_{n}^{-}converges to zero in W. In fact, we have that $g\left(x, u_{n}^{-}\right) u_{n}^{-}=0$ for all $n \in \mathbb{N}$ (by $\left.\left(g_{0}\right)\right)$ and so

$$
\begin{aligned}
&\left\langle I^{\prime}\left(u_{n}\right), u_{n}^{-}\right\rangle= \int_{\mathbb{R}^{N}}\left[\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla u_{n}^{-}+\xi(x)\left|u_{n}\right|^{p-2} u_{n} u_{n}^{-}\right] d x \\
&+\int_{\mathbb{R}^{N}} \frac{\left|\nabla u_{n}\right|^{2 p-2} \nabla u_{n}}{\sqrt{1+\left|\nabla u_{n}\right|^{2 p}} \nabla u_{n}^{-} d x-\int_{\mathbb{R}^{N}} g\left(x, u_{n}\right) u_{n}^{-} d x} \\
&= \int_{\mathbb{R}^{N}}\left[\left|\nabla u_{n}^{-}\right|^{p}+\xi(x)\left|u_{n}^{-}\right|^{p}\right] d x+\int_{\mathbb{R}^{N}} \frac{\left|\nabla u_{n}^{-}\right|^{2 p}}{\sqrt{1+\left|\nabla u_{n}^{-}\right|^{2 p}}} d x \\
& \geq\left\|u_{n}^{-}\right\|^{p} \rightarrow 0 \text { as } n \rightarrow+\infty, \\
& \Rightarrow \quad u_{n}^{-} \rightarrow 0 \text { in } W .
\end{aligned}
$$

Next we choose $v=u_{n}^{+}:=\max \left\{0, u_{n}\right\}$. We can find $C_{1}>0$ such that

$$
\begin{aligned}
& -\left\|u_{n}^{+}\right\|^{p}-\int_{\mathbb{R}^{N}} \frac{\left|\nabla u_{n}^{+}\right|^{2 p}}{\sqrt{1+\left|\nabla u_{n}^{+}\right|^{2 p}}} d x+\int_{\mathbb{R}^{N}} g\left(x, u_{n}^{+}\right) u_{n}^{+} d x \\
& =-\left\langle I^{\prime}\left(u_{n}\right), u_{n}^{+}\right\rangle \leq \frac{\varepsilon_{n}\left\|u_{n}^{+}\right\|}{1+\left\|u_{n}\right\|} \leq \varepsilon_{n} \leq C_{1} .
\end{aligned}
$$

Using $\left(g_{0}\right)$ we have

$$
\begin{gathered}
\int_{\mathbb{R}^{N}} p G\left(x, u_{n}\right) d x=\int_{\mathbb{R}^{N}} p G\left(x, u_{n}^{+}\right) d x \quad \text { for all } n \in \mathbb{N}, \\
\left(\text { since } \int_{\mathbb{R}^{N}} p G\left(x, u_{n}^{-}\right) d x=0 \text { for all } n \in \mathbb{N}\right) \\
\Rightarrow \quad \\
I\left(u_{n}\right)=I\left(u_{n}^{+}\right)+\frac{1}{p}\left\|u_{n}^{-}\right\|^{p}+\frac{1}{p} \int_{\mathbb{R}^{N}}\left[\sqrt{1+\left|\nabla u_{n}^{-}\right|^{2 p}}-1\right] d x .
\end{gathered}
$$

Also, we get

$$
0 \leq \int_{\mathbb{R}^{N}}\left[\sqrt{1+\left|\nabla u_{n}^{-}\right|^{2 p}}-1\right] d x \leq \int_{\mathbb{R}^{N}}\left|\nabla u_{n}^{-}\right|^{p} d x \leq\left\|u_{n}^{-}\right\|^{p} \rightarrow 0
$$

as $n \rightarrow+\infty$. Since the sequence $\left\{I\left(u_{n}\right)\right\}$ is bounded (recall $I\left(u_{n}\right)=$ $c-c_{n}$ and $c_{n} \rightarrow 0$ as $\left.n \rightarrow+\infty\right)$, we can find $C_{2}>0$ such that

$$
\begin{align*}
-p C_{2} \leq I\left(u_{n}^{+}\right)=\left\|u_{n}^{+}\right\|^{p}+\int_{\mathbb{R}^{N}}[& \left.\sqrt{1+\left|\nabla u_{n}^{+}\right|^{2 p}}-1\right] d x \tag{4}\\
& -\int_{\mathbb{R}^{N}} p G\left(x, u_{n}^{+}\right) d x \leq p C_{2}
\end{align*}
$$

Next we prove that $\left\{u_{n}^{+}\right\}$is bounded in W. We assume that $\left\{u_{n}^{+}\right\}$is an unbounded sequence. Let $\left\|u_{n}^{+}\right\| \rightarrow+\infty$ as $n \rightarrow+\infty$ (we can pass to a subsequence if necessary). Also, let $\left\|u_{n}^{+}\right\|>0$ for all $n \in \mathbb{N}$ and denote

$$
v_{n}=\frac{u_{n}^{+}}{\left\|u_{n}^{+}\right\|} \quad \text { for all } n \in \mathbb{N}
$$

So, $\left\|v_{n}\right\|=1$ for all $n \in \mathbb{N}$. We can find $v \in W$ such that

$$
\begin{array}{ll}
v_{n} \xrightarrow{w} v & \text { in } W \\
v_{n} \rightarrow v & \text { in } \left.L^{s}\left(\mathbb{R}^{N}\right) \text { and } L^{\alpha}\left(\mathbb{R}^{N}\right) \quad s, \alpha \in\right] p, p^{*}[.
\end{array}
$$

Let $\Omega:=\left\{x \in \mathbb{R}^{N}: v(x) \neq 0\right\}$. We claim that $|\Omega|=0$, where $|\cdot|$ denotes the Lebesgue measure in \mathbb{R}^{N}. By contradiction again, assume $|\Omega|>0$. We have

$$
u_{n}^{+}(x) \rightarrow+\infty \quad \text { for } x \in \Omega, \quad \text { as } n \rightarrow+\infty
$$

since $v_{n} \rightarrow v \neq 0$ in Ω. So, we can assume that $u_{n}^{+}(x)>0$ for $x \in \Omega$. By hypothesis (g_{2}), we have
$\lim _{n \rightarrow+\infty} \frac{G\left(x, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p}}=\lim _{n \rightarrow+\infty} \frac{G\left(x, u_{n}^{+}\right)}{\left(u_{n}^{+}\right)^{p}}\left(v_{n}\right)^{p}=+\infty \quad$ uniformly for $x \in \Omega$.
Also, using (g_{0}), we have

$$
G(x, z) \geq 0 \quad \text { for } x \in \mathbb{R}^{N}, \text { all } z \in \mathbb{R}
$$

From (5), by Fatou's lemma (hypotheses $\left(g_{1}\right)$ and $\left(g_{2}\right)$ permit its use), we deduce that

$$
\lim _{n \rightarrow+\infty} \int_{\Omega} \frac{G\left(x, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p}} d x=+\infty
$$

So, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\mathbb{R}^{N}} \frac{G\left(x, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p}} d x \geq \lim _{n \rightarrow+\infty} \int_{\Omega} \frac{G\left(x, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p}} d x=+\infty \tag{6}
\end{equation*}
$$

From (4), we get

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} \frac{G\left(x, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p}} d x & \leq \frac{1}{p}+\frac{1}{p\left\|u_{n}^{+}\right\|^{p}} \int_{\mathbb{R}^{N}}\left[\sqrt{1+\left|\nabla u_{n}^{+}\right|^{2 p}}-1\right] d x+\frac{C_{2}}{\left\|u_{n}^{+}\right\|^{p}} \\
& \leq \frac{2}{p}+\frac{C_{2}}{\left\|u_{n}^{+}\right\|^{p}}
\end{aligned}
$$

which implies

$$
\limsup _{n \rightarrow+\infty} \int_{\mathbb{R}^{N}} \frac{G\left(x, u_{n}^{+}\right)}{\left\|u_{n}^{+}\right\|^{p}} d x \leq \frac{2}{p}
$$

This is a contradiction with (6), therefore $|\Omega|=0$. We conclude that $v(x)=0$ for a.a. $x \in \mathbb{R}^{N}$. Since $I\left(t u_{n}^{+}\right)$is a continuous function on $[0,1]$ with respect to the variable t, for each $n \in \mathbb{N}$, we can find $t_{n} \in[0,1]$ such that

$$
I\left(t_{n} u_{n}^{+}\right)=\max _{t \in[0,1]} I\left(t u_{n}^{+}\right) .
$$

For $k>1$, we put

$$
r_{n}=k^{\frac{1}{p}} v_{n}=\frac{k^{\frac{1}{p}}}{\left\|u_{n}^{+}\right\|} u_{n}^{+} \in W \quad \text { for all } n \in \mathbb{N}
$$

Now, as $v_{n} \rightarrow 0$ in $L^{s}\left(\mathbb{R}^{N}\right)$ with $s \in\left[p, p^{*}\left[\right.\right.$ and $v_{n}(x) \rightarrow 0$ for a.a. $x \in$ \mathbb{R}^{N} as $n \rightarrow+\infty$, using hypothesis $\left(g_{1}\right)$ and Krasnoselskii's theorem (see, for instance, Motreanu-Motreanu-Papageorgiou [6], p. 41), we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\mathbb{R}^{N}} G\left(x, r_{n}\right) d x=0 \tag{7}
\end{equation*}
$$

As $\left\|u_{n}^{+}\right\| \rightarrow+\infty$, there is $n_{0} \in \mathbb{N}$ such that $0<k^{\frac{1}{p}} \frac{1}{\left\|u_{n}^{+}\right\|} \leq 1$ for all $n \geq n_{0}$. Also, from (7), we can find $n_{1} \geq n_{0}$ such that

$$
\int_{\mathbb{R}^{N}} G\left(x, r_{n}\right) d x<\frac{k}{2 p} \quad \text { for all } n \geq n_{1}
$$

So, we have
$I\left(t_{n} u_{n}^{+}\right) \geq I\left(r_{n}\right)$

$$
\begin{aligned}
= & \frac{1}{p} \int_{\mathbb{R}^{N}}\left[\left|\nabla r_{n}\right|^{p}+\xi(x)\left|r_{n}\right|^{p}\right] d x+\frac{1}{p} \int_{\mathbb{R}^{N}}\left[\sqrt{1+\left|\nabla r_{n}\right|^{2 p}}-1\right] d x \\
& -\int_{\mathbb{R}^{N}} G\left(x, r_{n}\right) d x \\
\geq & \frac{1}{p}\left\|r_{n}\right\|^{p}-\int_{\mathbb{R}^{N}} G\left(x, r_{n}\right) d x \\
\geq & \left.\frac{1}{p} k-\frac{1}{2 p} k \quad \text { for } n \text { large enough (that is, for all } n \geq n_{1}\right) \\
= & \frac{1}{2 p} k
\end{aligned}
$$

We conclude that

$$
\begin{equation*}
I\left(t_{n} u_{n}^{+}\right) \rightarrow+\infty \quad \text { as } \quad n \rightarrow+\infty \quad(k>1 \text { is arbitrary }) . \tag{8}
\end{equation*}
$$

Since

$$
I(0)=0 \quad \text { and } \quad\left\{I\left(u_{n}^{+}\right)\right\} \quad \text { bounded }(\text { see }(4)),
$$

it follows that we can find $n_{2} \geq n_{1}$ such that $\left.t_{n} \in\right] 0,1\left[\right.$ for all $n \geq n_{2}$. So, we have $0<t_{n} u_{n}^{+}(x)<u_{n}^{+}(x)$ for $n \geq n_{2}$ whenever $x \in \mathbb{R}^{N}$ is such that $u_{n}^{+}(x)>0$.

Now, by hypothesis $\left(g_{3}\right)$ we get

$$
\begin{align*}
\int_{\mathbb{R}^{N}} \sigma\left(x, t_{n} u_{n}^{+}\right) d x & \leq \int_{\mathbb{R}^{N}} \sigma\left(x, u_{n}^{+}\right) d x+\int_{\mathbb{R}^{N}} \beta(x) d x \tag{9}\\
& =\int_{\mathbb{R}^{N}} \sigma\left(x, u_{n}^{+}\right) d x+\|\beta\|_{L^{1}\left(\mathbb{R}^{N}\right)}
\end{align*}
$$

for all $n \geq n_{2}$.
Let $h:[0,+\infty[\rightarrow \mathbb{R}$ be the function defined by

$$
h(t)=\sqrt{1+t^{2 p}}-1-\frac{1}{2} \frac{t^{2 p}}{\sqrt{1+t^{2 p}}} .
$$

Since h is nondecreasing, using (2) and (9), we have

$$
\begin{aligned}
& I\left(t_{n} u_{n}^{+}\right)=I\left(t_{n} u_{n}^{+}\right)-\frac{1}{2 p}\left\langle I^{\prime}\left(t_{n} u_{n}^{+}\right), t_{n} u_{n}^{+}\right\rangle+o(1) \\
& =\frac{1}{2 p}\left\|t_{n} u_{n}^{+}\right\|^{p}+\frac{1}{p} \int_{\mathbb{R}^{N}}\left[\sqrt{1+\left|\nabla t_{n} u_{n}^{+}\right|^{2 p}}-1-\frac{1}{2} \frac{\left|\nabla t_{n} u_{n}^{+}\right|^{2 p}}{\sqrt{1+\left|\nabla t_{n} u_{n}^{+}\right|^{2 p}}}\right] d x \\
& \quad+\frac{1}{2 p} \int_{\mathbb{R}^{N}} \sigma\left(x, t_{n} u_{n}^{+}\right) d x+o(1)
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{1}{2 p}\left\|u_{n}^{+}\right\|^{p}+\frac{1}{p} \int_{\mathbb{R}^{N}}\left[\sqrt{1+\left|\nabla u_{n}^{+}\right|^{2 p}}-1-\frac{1}{2} \frac{\left|\nabla u_{n}^{+}\right|^{2 p}}{\sqrt{1+\left|\nabla u_{n}^{+}\right|^{2 p}}}\right] d x \\
& +\frac{1}{2 p} \int_{\mathbb{R}^{N}} \sigma\left(x, u_{n}^{+}\right) d x+\frac{1}{2 p}\|\beta\|_{L^{1}\left(\mathbb{R}^{N}\right)}+o(1) \\
= & I\left(u_{n}^{+}\right)-\frac{1}{2 p}\left\langle I^{\prime}\left(u_{n}^{+}\right), u_{n}^{+}\right\rangle+\frac{1}{2 p}\|\beta\|_{L^{1}\left(\mathbb{R}^{N}\right)}+o(1) \\
= & I\left(u_{n}^{+}\right)-\frac{1}{2 p}\left\langle I^{\prime}\left(u_{n}\right), u_{n}^{+}\right\rangle+\frac{1}{2 p}\|\beta\|_{L^{1}\left(\mathbb{R}^{N}\right)}+o(1) \\
\leq & C_{3} \quad \text { for all } n \geq n_{2} \text { and some } C_{3}>0(\text { see }(2))
\end{aligned}
$$

which contradicts (8). Therefore, $\left\{u_{n}^{+}\right\}$is a bounded sequence in W. Since $u_{n}^{-} \rightarrow 0$ in W, we conclude that $\left\{u_{n}\right\}$ is bounded in W.

By the reflexivity of W, we can find $u \in W$ such that

$$
u_{n} \xrightarrow{w} u \text { in } W \text { and } u_{n} \rightarrow u \text { in } L^{r}\left(\mathbb{R}^{N}\right) \text { for all } r \in\left[p, p^{*}[.\right.
$$

From $\left(g_{1}\right)$, using also the Hölder inequality, we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} g\left(x, u_{n}\right)\left(u_{n}-u\right) d x \\
& \leq \int_{\mathbb{R}^{N}}\left|g\left(x, u_{n}\right)\right|\left|u_{n}-u\right| d x \\
& \leq \int_{\mathbb{R}^{N}}\left(k(x)+c\left|u_{n}\right|^{\alpha-1}\right)\left|u_{n}-u\right| d z \\
& \leq\|k\|_{L^{s^{\prime}}\left(\mathbb{R}^{N}\right)}\left\|u_{n}-u\right\|_{L^{s}\left(\mathbb{R}^{N}\right)}+c\left\|u_{n}\right\|_{L^{\alpha}\left(\mathbb{R}^{N}\right)}^{\alpha-1}\left\|u_{n}-u\right\|_{L^{\alpha}\left(\mathbb{R}^{N}\right)}
\end{aligned}
$$

with $s, \alpha \in\left[p, p^{*}\left[\right.\right.$ and $s^{\prime}=s(s-1)^{-1}$.
It follows that

$$
\lim _{n \rightarrow+\infty} \int_{\mathbb{R}^{N}} g\left(x, u_{n}\right)\left(u_{n}-u\right) d x=0
$$

Also, we have $\left\langle I^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle \rightarrow 0$ as $n \rightarrow+\infty$ (by (3)). Therefore, we get

$$
\begin{aligned}
& \left\langle J\left(u_{n}\right), u_{n}-u\right\rangle+\int_{\mathbb{R}^{N}} \frac{\left|\nabla u_{n}\right|^{2 p-2} \nabla u_{n}}{\sqrt{1+\left|\nabla u_{n}\right|^{2 p}} \nabla\left(u_{n}-u\right) d x} \\
= & \int_{\mathbb{R}^{N}} g\left(z, u_{n}\right)\left(u_{n}-u\right) d z+\left\langle I^{\prime}\left(u_{n}\right), u_{n}-u\right\rangle \rightarrow 0 \text { as } n \rightarrow+\infty .
\end{aligned}
$$

We can assume that (we pass to a subsequence if necessary)

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty}\left\langle J\left(u_{n}\right), u_{n}-u\right\rangle \leq 0 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \int_{\mathbb{R}^{N}} \frac{\left|\nabla u_{n}\right|^{2 p-2} \nabla u_{n}}{\sqrt{1+\left|\nabla u_{n}\right|^{2 p}}} \nabla\left(u_{n}-u\right) d x \leq 0 . \tag{11}
\end{equation*}
$$

If (10) holds, then the convexity of the function $\|\cdot\|$ ensures that

$$
\limsup _{n \rightarrow+\infty}\left\|u_{n}\right\| \leq\|u\|
$$

If (11) holds, then the convexity of the function $\sqrt{1+t^{2 p}}-1$ ensures again that

$$
\limsup _{n \rightarrow+\infty}\left\|u_{n}\right\| \leq\|u\|
$$

The uniform convexity of W gives us $u_{n} \rightarrow u$ in W (see Motreanu-Motreanu-Papageorgiou [6], p. 30). So, I satisfies the $\left(C_{c}\right)$-condition on W.

Lemma 2. If hypotheses $\left(g_{0}\right)-\left(g_{4}\right)$ hold, then we have:
(i) there is $\zeta \in W, \zeta>0$ such that $I(t \zeta) \rightarrow-\infty$ as $t \rightarrow+\infty$;
(ii) there are $\rho>0$ and $\delta>0$ such that $I(u) \geq \delta$ for all $u \in W$ with $\|u\|=\rho$.

Proof. (i): By hypotheses $\left(g_{0}\right)$ and $\left(g_{2}\right)$, we can find $C_{\theta}>0$ (for an appropriate constant $\theta>0$) such that

$$
G(x, z) \geq \frac{\theta}{p}|z|^{p}-C_{\theta} \quad \text { for all } z \geq 0
$$

Let $\mathcal{B}:=B(0,1)=\left\{x \in \mathbb{R}^{N}:|x| \leq 1\right\}$ and consider a positive function $v \in C_{0}^{\infty}(\mathcal{B})$. Let ζ be the extension of v to zero out of \mathcal{B}. So, for all $t>1$ we have

$$
\begin{aligned}
I(t \zeta)= & \frac{t^{p}}{p} \int_{\mathbb{R}^{N}}\left[|\nabla \zeta|^{p}+\xi(x)|\zeta|^{p}\right] d x+\frac{1}{p} \int_{\mathbb{R}^{N}}\left(\sqrt{1+t^{2 p}|\nabla \zeta|^{2 p}}-1\right) d x \\
& -\int_{\mathcal{B}} G(x, t \zeta) d x \leq \frac{t^{p}}{p}\left[2\|\zeta\|^{p}-\theta \int_{\mathcal{B}} \zeta^{p} d x\right]+C_{\theta}|\mathcal{B}| .
\end{aligned}
$$

Now, we choose $\theta>0$ satisfying

$$
2\|\zeta\|^{p}-\theta \int_{\mathcal{B}} \zeta^{p} d x<0
$$

so that $\lim _{t \rightarrow+\infty} I(t \zeta)=-\infty$.
(ii): By hypotheses $\left(g_{1}\right)$ and $\left(g_{4}\right)$, we can find $C_{\varepsilon}>0$ (for each $\varepsilon>0$) such that

$$
\begin{equation*}
G(x, z) \leq \frac{1}{p}(l(x)+\varepsilon)|z|^{p}+C_{\varepsilon}|z|^{\alpha} \quad \text { for } x \in \mathbb{R}^{N}, \text { all } z \in \mathbb{R} \text {. } \tag{12}
\end{equation*}
$$

We stress that $W \hookrightarrow L^{p}\left(\mathbb{R}^{N}\right)$ and $W \hookrightarrow L^{\alpha}\left(\mathbb{R}^{N}\right)$ are continuous. Therefore, we can find constants C_{p} and C_{α} such that

$$
\begin{equation*}
\|u\|_{L^{p}\left(\mathbb{R}^{N}\right)} \leq C_{p}\|u\| \quad \text { and } \quad\|u\|_{L^{\alpha}\left(\mathbb{R}^{N}\right)} \leq C_{\alpha}\|u\| \text { for all } u \in W . \tag{13}
\end{equation*}
$$

For $u \in W$ with $\|u\|<1$, by (13) and (12), we have

$$
\begin{aligned}
I(u)= & \frac{1}{p} \int_{\mathbb{R}^{N}}\left[|\nabla u|^{p}+\xi(x)|u|^{p}\right] d x+\int_{\mathbb{R}^{N}}\left(\sqrt{1+|\nabla u|^{2 p}}-1\right) d x \\
& -\int_{\mathbb{R}^{N}} G(x, u) d x \\
\geq & \frac{1}{p}\|u\|^{p}-\frac{\|l\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+\varepsilon}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x-C_{\varepsilon} \int_{\mathbb{R}^{N}}|u|^{\alpha} d x \\
\geq & \frac{1}{p}\left(1-\left(\|l\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+\varepsilon\right) C_{p}^{p}\right)\|u\|^{p}-C_{\varepsilon} C_{\alpha}^{\alpha}\|u\|^{\alpha} \\
= & {\left[\frac{1}{p}\left(1-\left(\|l\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+\varepsilon\right) C_{p}^{p}\right)-C_{\varepsilon} C_{\alpha}^{\alpha}\|u\|^{\alpha-p}\right]\|u\|^{p} . }
\end{aligned}
$$

Let $\varepsilon>0$ and $\rho \in] 0,1[$ be such that

$$
\sigma=\frac{1}{p}\left(1-\left(\|l\|_{L^{\infty}\left(\mathbb{R}^{N}\right)}+\varepsilon\right) C_{p}^{p}\right)-C_{\varepsilon} C_{\alpha}^{\alpha} \rho^{\alpha-p}>0 .
$$

We conclude that $I(u) \geq \sigma \rho^{p}=\delta>0$ for all $u \in W$ such that $\|u\|=\rho$.

Remark 2. If t_{0} is large enough, the function $w=t_{0} \zeta \in W$ satisfies $I(w)<0$ and $\|w\|>\rho$.

Now, Lemmata 1 and 2 ensure that I satisfies the hypotheses of Theorem 1 and hence I has a critical value $c \geq m_{\rho}$. So, we can find $\widehat{u} \in X$ such that

$$
\begin{aligned}
\left\langle I^{\prime}(\widehat{u}), v\right\rangle= & \int_{\mathbb{R}^{N}}\left[|\nabla \widehat{u}|^{p-2} \nabla \widehat{u} \nabla v+\xi(x)|\widehat{u}|^{p-2} \widehat{u} v\right] d x \\
& +\int_{\mathbb{R}^{N}} \frac{|\nabla \widehat{u}|^{2 p-2} \nabla \widehat{u}}{\sqrt{1+|\nabla \widehat{u}|^{2 p}}} \nabla v d x-\int_{\mathbb{R}^{N}} g(x, \widehat{u}) v d x=0
\end{aligned}
$$

for all $v \in W$.
If we choose $v=\widehat{u}^{-}$, we get

$$
0=\left\|\widehat{u}^{-}\right\|^{p}+\int_{\mathbb{R}^{N}} \frac{\left|\nabla \widehat{u}^{-}\right|^{2 p}}{\sqrt{1+\left|\nabla \widehat{u}^{-}\right|^{2 p}}} d x-\int_{\mathbb{R}^{N}} g\left(x, \widehat{u}^{-}\right) \widehat{u}^{-} d x \geq\left\|\widehat{u}^{-}\right\|^{p} .
$$

It follows that $\widehat{u}^{-}=0$ and so $\widehat{u} \geq 0$ and $\widehat{u} \neq 0$.
Therefore we can state the following existence theorem for problem (1).

Theorem 2. If hypotheses $\left(g_{0}\right)-\left(g_{4}\right)$ hold, then problem (1) has at least one nonnegative nontrivial weak solution.

Acknowledgment: The author wishes to thank the expert referee for the corrections and remarks.

References

[1] G.A. Afrouzi, M. Kirane, S. Shokooh, Infinitely many weak solutions for $p(x)$-Laplacian-like problems with Neumann condition, Complex Var. Elliptic Equ., 63 (2018), 23-36.
[2] A.K. Ben-Naoum, C. Troestler, M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Anal., 26 (1996), 788795.
[3] M.F. Chaves, G. Ercole, O.H. Miyagaki, Existence of a nontrivial solution for the (p, q)-Laplacian in \mathbb{R}^{N} without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 114 (2015), 133-141.
[4] Z.C. Chen, T. Luo, The eigenvalue problem for p-Laplacian-Like equations, Int. J. Math. Math. Sci., 2003:9 (2003), 575-586.
[5] G. Li, C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the AmbrosettiRabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
[6] D. Motreanu, V.V. Motreanu, N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
[7] N.S. Papageorgiou, E.M. Rocha, On nonlinear parametric problems for p-Laplacian-like operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 103 (2009), 177-200.
[8] M.M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for $p(x)$-Laplacian-like operators, Mediterr. J. Math., 9 (2012), 211-223.
[9] S. Shokooh, Existence and multiplicity results for elliptic equations involving the $p(x)$-Laplacian-like, An. Univ. Craiova Ser. Mat. Inform., 44 (2017), 249258.
[10] C. Vetro, Weak solutions to Dirichlet boundary value problem driven by $p(x)$-Laplacian-like operator, Electron. J. Qual. Theory Differ. Equ., 2017:98 (2017), 1-10.
[11] Q.-M. Zhou, On the superlinear problem involving $p(x)$-Laplacian-like operators without AR-condition, Nonlinear Anal. Real World Appl., 21 (2015), 161-169.
(C. Vetro) University of Palermo, Department of Mathematics and Computer Science, Via Archirafi 34, 90123 - Palermo, Italy

E-mail address: calogero.vetro@unipa.it

